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Abstract

Complex assets appear to have high average returns and high Sharpe ratios. However,

despite these attractive attributes, participation in complex assets markets is very limited.

We argue that this is because investing in complex assets requires a model, and investors’

individual models expose them to investor-specific risk. Investors with higher expertise

have better models, and thus face lower risk. We construct a dynamic economy in which

the joint distribution of wealth and expertise determines aggregate risk bearing capacity in

the long-run equilibrium. In this equilibrium, more complex asset markets, i.e. those which

are more difficult to model, have lower participation rates, despite having higher market-

level Sharpe ratios, provided that asset complexity and expertise are complementary. In

this case, higher expert demand reduces equilibrium required returns, depressing overall

participation. Thus, our theory explains why complex assets can have “permanent alpha”,

despite free entry.
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1 Introduction

Complex investment strategies, such as those employed by hedge funds and other sophisticated

investors, appear to generate persistent alphas, high Sharpe ratios1, and to feature limited

participation. That is, they appear to present a limiting case for slow-moving capital, in which

markets remain segmented even in the very long run, and returns exhibit “permanent alpha”.

We develop an industry equilibrium model of complex asset markets that is consistent with

these facts. The model’s key features are investors with heterogeneous expertise, and free

entry.

We define a complex asset as one that imposes a significant amount of non-diversifiable but

idiosyncratic risk on risk-averse investors. More complex assets impose more investor-specific

risk on investors holding the asset. There is a growing empirical literature that documents the

importance of idiosyncratic risk in the complex asset strategies deployed by hedge funds.2 We

argue that exposure to idiosyncratic risk arises because investing in complex assets requires

a model.3 Merton (1987) was first to point out that idiosyncratic risk will be priced when

there are costs associated with learning about or hedging a specific asset. We derive a specific

micro-foundation for the idiosyncratic risk in complex assets based on the returns earned from

long position in a fundamental asset with some mispricing, or aggregate risk-adjusted “alpha”,

and a short position in an imperfect tracking portfolio. Fixed income arbitrage provides a

good laboratory to study complex assets, because its implementation requires hedging and risk

models. Moreover, more complex strategies within fixed income arbitrage, such as mortgage-

backed security (MBS) strategies, have superior performance to less complex strategies, such

as swap spread arbitrage.4

Our model economy is populated by a continuum of risk-averse agents who choose to be

either non-experts who can invest only in the risk free asset, or experts who can invest in both

the risk free and risky assets. On average, all expert investors in the complex asset earn the

common market-clearing equilibrium return, but their returns are subject to investor-specific (or

1See Sharpe (1966).
2 Several papers provide evidence for the importance of idiosyncratic risk in hedge fund returns (see, e.g.,

Titman and Tiu, 2011; Lee and Kim, 2014). Pontiff (2006) investigates the role of idiosyncratic risk faced by
arbitrageurs in a review of the literature and argues that “The literature demonstrates that idiosyncratic risk
is the single largest cost faced by arbitrageurs”. Greenwood (2011) states that “Arbitrageurs are specialized
and must be compensated for idiosyncratic risk,” and lists this first as the key friction investors in complex
strategies face.

3To paraphrase Emanuel Derman, if you are using a model, you are short volatility, since you will lose money
when your model is wrong, (see Derman, 2016).

4See Duarte, Longstaff, and Yu (2006) for evidence that fixed income strategies which require more intel-
lectual capital display higher returns and Sharpe ratios. Gabaix, Krishnamurthy, and Vigneron (2007) provide
evidence that MBS returns are driven in large part by limits to arbitrage.
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strategy-specific) shocks. Expertise shrinks the investor-specific volatility of the complex asset

return, and, as a result, more expert investors earn a higher Sharpe ratio. The interpretation

under the microfoundation we propose is that expert investors build better hedging or tracking

portfolios, with lower residual risk.

In our model, risk is investor-specific and idiosyncratic risk is priced.5 Funds cannot be

reallocated across individual risk-averse investors. Since the risk in our economy is idiosyncratic,

pooling this risk would eliminate the risk premium that experts require to hold it. For incentive

reasons, asset managers cannot hedge their own exposure to their particular portfolio.6 This

motivates why we endow expert investors in our model with CRRA preferences, but we do not

model the principal-agent relation between the outside investors and asset managers.

Expert demand and risk bearing capacity act as a barrier to entry below a threshold level

of expertise. Market clearing returns must compensate participating investors for the investor-

specific risk they face, but less expert investors may not be adequately compensated, because

equilibrium wealth-weighted demand from higher expertise investors depresses required returns.

There is free entry, but, even in the long run, participation is limited and alpha is not dissipated.

We characterize the equilibrium mapping from the endogenous joint distribution of expertise

and financial wealth to complex asset prices. Importantly, in our dynamic equilibrium model, as

opposed to in any static model, the stationary distribution for wealth conditional on expertise

is endogenous.

More complex assets impose more idiosyncratic risk on investors because they are harder

to model. As a result, more complex assets earn higher equilibrium returns. The fact that

assets with higher idiosyncratic risk require higher returns is unsurprising. Our model also has

predictions about the equilibrium compensation per unit of risk, or Sharpe ratio. In theory,

excess returns relative to risk may either increase or decrease as complexity (and hence risk)

increases. Indeed, we show that market-level Sharpe ratios, which aggregate the individual

Sharpe ratios of market participants, increase with asset complexity only if expertise and com-

plexity are complementary, meaning that a marginal increase in idiosyncratic risk increases

the rents from expertise. To clear the market at the higher risk level, excess returns must

increase. However, if expertise and complexity are complementary, as complexity and therefore

risk increase, participation declines as inexpert investors are driven out. The selection effect–

the exclusion of lower expertise investors–attenuates the negative effect of increased risk on the

5This is, of course, a useful assumption technically. We could, equivalently, assume that all investors have
the same exposure to systematic risk, applying the results in Krueger and Lustig (2009).

6In fact, Panageas and Westerfield (2009) and Drechsler (2014) provide important results for the portfolio
choice of hedge fund managers who earn fees based on assets under management and portfolio performance. In
particular, they show that these managers behave like constant relative risk aversion investors. These results
extend the analysis of the impact of high-water marks in Goetzmann, Ingersoll, and Ross (2003).
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market-level Sharpe ratio and ensures that this ratio increases. On the other hand, if expertise

and complexity are not complementary, an increase in risk leads to increased participation, and

both the direct effect of higher risk, and the selection effect of inexpert investors, drive Sharpe

ratios lower. Thus, we argue that persistently elevated Sharpe ratios should only appear in

markets for which expertise is more valuable as complexity increases.

In our model, expertise varies in the cross-section but is fixed for each agent over time. This

allows us to solve our model analytically, including the joint stationary wealth and expertise

distribution, in closed form, up to the equilibrium fixed point for expected returns.7 The joint

distribution is determined by the deep parameters which describe preferences, endowments, and

technologies. We analyze the stationary joint distribution of wealth and expertise to examine

the relation between size and skill in complex asset markets. The stationary wealth distribu-

tion of participants is Pareto conditional on each expertise level. Because investors with higher

expertise choose a higher exposure to the risky asset, both the drift and the volatility of their

wealth will be greater, leading to a fatter tailed distribution at higher expertise levels. How-

ever, our model also predicts, under natural conditions, that more complex asset markets will

have less concentrated wealth distributions. This is because, in equilibrium, selection reduces

expertise heterogeneity, and more so for more complex assets when expertise and complexity

are complementary. We provide evidence for this ancillary prediction using data from Hedge

Fund Research on size distributions across different strategies.

In terms of its asset pricing implications, our paper contributes to a large and growing

literature on segmented markets and asset pricing. Relative to the existing literature, we

provide a model with endogenous entry, a continuous distribution of heterogeneous expertise,

and a rich distribution of expert wealth that is determined in stationary equilibrium. Thus,

we have segmented markets, but allow for a participation choice. Our market has limited risk

bearing capacity, determined in part by expert wealth, but in addition to the amount of wealth,

the efficiency of the wealth distribution also matters for asset pricing. While substantial recent

attention has been paid to slow moving capital, and to temporarily elevated basis spreads, we

argue that it is equally important to understand “permanent alpha” and markets which remain

segmented in the long run.

We group the existing literature studying segmented markets and asset pricing into three

main categories, namely investor heterogeneity, financial constraints and limits to arbitrage,

and segmented market models with alternative micro-foundations to agency theory. There is

closely related work on heterogeneity in trading technologies and risk aversion (see, e.g., Dumas,

1989; Basak and Cuoco, 1998; Kogan and Uppal, 2001; Chien, Cole, and Lustig, 2011, 2012).

7We use a numerical algorithm to solve the market clearing fixed point problem. However, the solution is
straightforward given our analytical solution for policy functions and distribution over individual states.
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Our study shares the goal of understanding the returns to complex assets and strategies,

and the features of segmented markets and trading frictions, with the literature on limits of

arbitrage. Gromb and Vayanos (2010a) provide a recent survey of the theoretical literature on

limits to arbitrage, starting with the early work by Brennan and Schwartz (1990) and Shleifer

and Vishny (1997).8 Shleifer and Vishny (1997) emphasize that arbitrage is conducted by a

fraction of investors with specialized knowledge, but similar to He and Krishnamurthy (2012),

they focus on the effects of the agency frictions between arbitrageurs and their capital providers.

Although we do not explicitly model risks to the liability side of investors’ balance sheets, one

can interpret the shocks agents in our model face to include idiosyncratic redemptions. The

asset pricing impact of financially constrained intermediaries has been studied in the literature

on intermediary asset pricing following He and Krishnamurthy (2012, 2013) (see also, for ex-

ample, Adrian and Boyarchenko, 2013). For empirical applications, see for example, Adrian,

Etula, and Muir (2014), and Muir (2014).

Finally, several papers develop alternative micro-foundations to agency theory for segmented

markets. Allen and Gale (2005) provides an overview of their theory of asset pricing based

on “cash-in-the-market”. Plantin (2009) develops a model of learning by holding. Duffie and

Strulovici (2012) develop a theory of capital mobility and asset pricing using search foundations.

Glode, Green, and Lowery (2012) study asset price dynamics in a model of financial expertise

as an arms race in the presence of adverse selection. Kurlat (2016) studies an economy with

adverse selection in which buyers vary in their ability to evaluate the quality of assets on

the market, and, like us, emphasizes the distribution of expertise on the equilibrium price of

the asset. Gǎrleanu, Panageas, and Yu (2015) derive market segmentation endogenously from

differences in participation costs. Edmond and Weill (2012), Haddad (2014), and DiTella (2016)

study the effects of idiosyncratic risk from concentrated holdings on asset prices. Kacperczyk,

Nosal, and Stevens (2014) construct a model of consumer wealth inequality from differences in

investor sophistication.

In terms of methodology, our model is an example of an “industry equilibrium” model in the

spirit of Hopenhayn (1992a,b).9 This literature focuses in large part on explaining firm growth,

and moments describing the firm size distribution. Recent progress in the firm dynamics litera-

ture using continuous time techniques to solve for policy functions and stationary distributions

8See also Aiyagari and Gertler (1999); Froot and O’Connell (1999); Basak and Croitoru (2000); Xiong (2001);
Gromb and Vayanos (2002); Yuan (2005); Gabaix, Krishnamurthy, and Vigneron (2007); Mitchell, Pedersen,
and Pulvino (2007); Acharya, Shin, and Yorulmazer (2009); Kondor (2009); Duffie (2010); Gromb and Vayanos
(2010b); Hombert and Thesmar (2014); Mitchell and Pulvino (2012); Pasquariello (2014); Kondor and Vayanos
(2014).

9Such models are typically used to study the role of firm dynamics, entry, and exit in determining equilibrium
prices in an environment which builds on the heterogeneous agent framework developed in Bewley (1986).
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include Miao (2005); Luttmer (2007); Gourio and Roys (2014); Moll (2014); Achdou, Han,

Lasry, Lions, and Moll (2014). We draw on results in these papers as well as discrete time

models of firm dynamics, as in recent work by Clementi and Palazzo (2016), which emphasizes

the role of selection in explaining the observed relationships between firm age, size, and pro-

ductivity. We are the first to use a model in this class to study the size or wealth distribution

of financial intermediaries.

Recently, dynamic heterogeneous agent models have also been used to study wealth dis-

tributions in the consumer sector. Although our focus is on the application to the long-run

equilibrium pricing of complex assets, we make several theoretical contributions to this liter-

ature. We build on work by Benhabib, Bisin, and Zhu (2011, 2015, 2016),10 which study the

wealth distribution of consumers subject to idiosyncratic shocks to capital and/or labor income

risk. These papers contain fundamental results describing necessary conditions for fat-tailed

or Pareto wealth distributions, as well as interesting positive results about the importance of

capital income shocks and taxation schemes in shaping observed wealth inequality.11 A key

distinction of our work is that we clear the market for the risky asset, and solve the resulting

fixed point problem determining equilibrium excess returns and market volatility, consistent

with our interpretation of the complex risky asset market we study. Another distinction is

that we study a participation decision, which plays a crucial role in our model’s equilibrium

price and allocation outcomes. Our paper also introduces heterogeneity in technologies, which

leads to endogenous variation in the drift and volatility of wealth across agents.12 Finally,

another distinction is that we draw on the techniques used in Gabaix (1999), who studies city

size distributions in a model in which relative sizes follow a reflecting, or regulated, geometric

Brownian motion. Because the stationary distribution in our model depends on the equilibrium

fixed point excess return on the risky asset, it is more convenient for us to employ a reflecting

barrier for relative wealth levels, rather than Poisson elimination as in the Benhabib, Bisin,

Zhu (and many other) papers.

The paper proceeds as follows. Section 2 contains the construction and analysis of our

dynamic model, and finally Section 6 concludes. Most proofs appear in the Appendix.

10See also Kaplan, Moll, and Violante (2016) for a model with a portfolio choice over liquid and illiquid assets.
11See Gabaix (2009) for a review of the empirical evidence and theoretical foundations for power law distri-

butions in economics and finance.
12Gabaix, Lasry, Lions, and Moll (2016) also emphasize the importance of heterogeneity in income growth

rates in generating realistic inequality. They do not feature a portfolio choice, or endogenous variation in growth
rates, and thus our study complements theirs. See also Toda (2014) and Toda and Walsh (2015) for related
results describing consumer wealth distributions using double power laws.
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2 Model

According to its general definition, α cannot be generated by bearing systematic risk. However,

capturing α is risky. We provide a specific microfoundation for the idiosyncratic risk in complex

assets by modeling investment in complex assets as long-short strategies which attempt to

“harvest alpha” in a fundamental asset by going long the fundamental asset, and short a

tracking portfolio that eliminates systematic or aggregate risk, but is fairly priced.

More generally, it can be argued that complex assets expose their owners to idiosyncratic

risk through several channels. First, any investment in a complex asset requires a joint invest-

ment in the front and back office infrastructure necessary to implement the strategy. Second,

their constituents tend to be significantly heterogeneous, so that no two investors hold exactly

the same asset. Third, the risk management of complex assets typically requires a hedging

strategy that will be subject to the individual technological constraints of the investor. Hedg-

ing portfolios, to cite just one example, tend to vary substantially across different investors

in the same asset class.13 Fourth, firms which manage complex assets may be exposed to key

person risk due to the importance of specialized traders, risk managers, and marketers.14

2.1 Preferences, Endowments, & Technologies

We study a model with a continuum of investors of measure one, with CRRA utility functions

over consumption:

u (c) =
c1−γ

1− γ
.

Investment Technology Investors are endowed with a level of expertise which varies in the

cross section, but is fixed for each agent over time. Each individual investor is born with a

fixed expertise level, x, drawn from a distribution with pdf λ(x), and a continuous cdf Λ(x).

Investors can choose to be experts, and have access to the complex risky asset, or non-experts,

who can only invest in the risk free asset.

Each investor’s complex risky asset delivers a stochastic return which follows a geometric

13For example, in MBS, there is no agreed upon method to hedge mortgage duration risk, though most all
active investors do so. Some hedge according to empirical durations, using various estimation periods and
rebalancing periods. Others hedge according to the sensitivity of MBS prices yield curve shifts using their own
(widely varying) proprietary model of MBS prepayments and prices.

14Broadly interpreted, these risks may come either from the asset side, or from the liability side, since funding
stability likely varies with expertise. However, we abstract from the micro-foundations of risks from the liability
side of funds’ balance sheets, and model risk on the asset side. Note that the Appendix presents an equivalent
model specification with exogenous fund flows which are increasing and concave in expertise.
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Brownian motion:

dRi(t, s) = [rf + α (s)] ds+ σ (σν , x) dBi (t, s) (1)

where α (s) is the common excess return on the risky asset and Bi (t, s) is a standard Brownian

motion which is investor-specific and i.i.d. in the cross section. Hereafter, we suppress the

dependence of the Brownian shock on investor i in our notation for parsimony. The effective

volatility of the risky technology, σ (σν , x) is a function of the volatility of the complex asset

before expertise is applied, and the specific investor’s level of expertise, x. We use the notation

σν and the language “total volatility” to describe the overall level of volatility of a complex

asset class, before expertise is applied. “Effective volatility” is, then, a function of the asset’s

“total” volatility, and the investor’s level of expertise. For now, we focus on describing the

equilibrium for a single asset, and we suppress the positive dependence of σ(x) on the total

volatility of the asset class σν . Below, we describe comparative statics across assets with varying

complexity, with more complex assets characterized by a higher σν , or “total volatility”. We

refer to σ(x) as “effective volatility”, meaning the remaining volatility the investor faces after

expertise has been applied. In particular, we assume that the volatility of the risky technology

σ(x) decreases in the investor’s level of expertise x, i.e. ∂σ(x)
∂x

< 0. For convenience, we assume

that the support of expertise is bounded above by x̄, although most of our results only require

that limx→∞ σ(x) = σ > 0. The implied lower bound on volatility, σ, represents complex asset

risk that cannot be eliminated even by the agents with the greatest expertise, and it guarantees

that the growth rate of wealth is finite.

A simple motivation for the return process in Equation (1) is that in order to invest in the

risky asset and to earn the common market clearing return, an investor must also jointly invest

in a technology with a zero mean return and an idiosyncratic shock. This technology represents

each investor’s specific hedging and financing technologies, as well as the unique features of

their particular asset. We also provide a specific formal micro-foundation for Equation (1)

in Lemma 2.1. Investors take a long position in an underlying asset with some alpha or mis-

pricing relative to its systematic risk exposure, and a short position in an imperfectly correlated,

investor-specific, tracking portfolio. The long-short position is designed to “harvest the alpha”

in the underlying asset while hedging out unnecessary aggregate risk exposures to the agent’s

best ability. It can also be interpreted as a relative value strategy aimed at over and under

weighting different parts of the cross section in order to capture misvaluation while attempting

to hedge out market level risk, as is common practice in quantitative equity and fixed income

strategies. Consistent with our motivation, Fung and Hsieh (1997) report that hedge fund

returns, unlike mutual fund returns, have a low, and indeed sometimes negative, correlation

with asset class returns.
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Investors with more expertise have superior tracking portfolios which hedge out more of the

risk in the underlying asset. As a result, their total net position is less risky and they earn the

common market clearing alpha while bearing less risk. An additional contribution of our paper

is to provide a precise explanation for the idiosyncratic risk that the prior literature has argued

is important for understanding complex asset returns.15

Lemma 2.1 Each investor’s investor-specific return process, given by (1), can be derived as the

net return on a strategy in which the investor takes a long position in an underlying fundamental

asset, and a short position in a tracking portfolio. The returns to the fundamental asset are

given by:
dF (t, s)

F (t, s)
= [rf + α(s) + a(s)] dt+ σFdBF (t, s). (2)

The returns to each investor’s best per-unit tracking portfolio is given by:

dTi(t, s)

Ti(t, s)
= a(s)dt+ ρi(x)σFdBF (t, s)− σT (x)dBT

i (t, s), (3)

where dBF (t, s) and dBT
i (t, s) are independent Brownian motions, and ρi(x) represents the

dependence of the investor’s tracking portfolio returns on the fundamental risk in the underlying

asset. The correlation between the investor’s tracking portfolio return and underlying asset

return is given by

corr

(
dTi
Ti
,
dF

F

)
=

ρi(x)σF√
((1− ρi(x))σF )2 + (σT (x))2

,

which is increasing in ρi(x). We assume that ∂|ρi(x)−1|
∂x

< 0, so that higher expertise investors

have access to tracking portfolios which hedge out more fundamental risk. The net asset returns

are given by:

dRi (t, s) =
dF (t, s)

F (t, s)
− dTi(t, s)

Ti(t, s)
= [rf + α(s)] dt+ σ(x)dBi(t, s), (4)

where

σ(x)dBi(t, s) ≡ (1− ρi(x))σFdBF (t, s) + σT (x)dBT
i (t, s). (5)

The return process in Equations (4)-(5) generates a single process for expertise level wealth

15We thank Peter Kondor for providing a closely related static micro-foundation in his discussion of our
paper. See Pontiff (1996), Pontiff (2006), and Greenwood (2011) for evidence of idiosyncratic risk as a limit to
arbitrage. Consistent with our model and micro-foundation of complex asset returns, Pontiff (1996) finds that
closed end mutual funds with portfolios that are more difficult to replicate have values that deviate more from
fundamentals.
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dynamics in which aggregate risk washes out, and all investors with expertise level x face the

same amount of effective risk, under the sufficient condition in Assumption 1:

Assumption 1 At each level of expertise, half of investors over-hedge (type o with ρo(x) > 1),

and half under-hedge (type u with ρu(x) < 1). That is,

ρo(x) + ρu(x)

2
= 1.

We omit the proof, which is given in the calculations provided. Lemma A.2, which we write

formally and prove in the Appendix, states that, given the micro-foundation for the return

process in Equation (1) provided in Lemma 2.1, aggregate shocks do not affect equilibrium

policy functions or prices, and therefore the return dynamics Equation (1) are taken as given

in the remainder of the main text.

Note that, by definition, if the tracking portfolio returns are not perfectly correlated with

the underlying asset returns (in which case there would exist a risk-less arbitrage opportunity),

then the tracking portfolio introduces risk which is independent from fundamental risk. We

assume this independent risk is uncorrelated across investors. Because each investor has their

own model and strategy implementation, tracking portfolios introduce investor-specific shocks.

Formally, we use the fact that any Brownian shock which is partially correlated with the

underlying fundamental Brownian shock dBF (t, s) can be decomposed into a linear combination

of a correlated shock and an independent shock. We denote this independent, investor-specific

shock dB∗i (t, s). The amount of idiosyncratic risk the tracking portfolio introduces is smaller

the closer to one is ρi(x), which is intuitive. We assume that agents with higher expertise have

better tracking portfolios which eliminate more risk from the underlying fundamental shock.

Across asset classes, more complex assets are characterized by more imperfect models and

tracking portfolios, and hence highly complex assets impose more total risk σν on investors.

This higher total risk can result from overall lower quality tracking portfolios (lower ρi(x)).

Higher total risk can also result from the greater model and execution risk of highly complex

assets, which can be considered to be part of σT (x).

To be an expert, an investor must pay the entry cost Fnx to set up their specific tech-

nology for investing in the complex risky asset. Experts must also pay a maintenance cost,

Fxx to maintain continued access to the risky technology. We specify that both the entry and

maintenance costs are proportional to wealth:

Fnx = fnxw,

Fxx = fxxw,

9



which yields value functions which are homogeneous in wealth.

Optimization We first describe the Bellman equations for non-experts and experts respec-

tively, and characterize their value functions, as well as the associated optimal policy functions.

With the value functions of experts and non-experts in hand, we then characterize the entry

decision.

We begin with non-experts, who can only invest in the risk free asset. Let w (t, s) denote

the wealth of investors at time s with initial wealth Wt at time t. The riskless asset delivers a

fixed return of rf . All investors choose consumption, and an optimal stopping, or entry time

according to the Bellman Equation:

V n (w (t, s) , x) = max
cn(t,s),τ

E
[∫ τ

t

e−ρ(s−t)u (cn (t, s)) ds+ e−ρ(τ−t)V x (w (t, s)− Fnx, x)

]
(6)

s.t. dw (t, s) = (rfw (t, s)− cn (t, s)) ds (7)

where ρ is their subjective discount factor, cn (t, s) is consumption at time s, Fnx is the entry

cost, and τ is the optimal entry date.

Under the assumptions of linear entry and maintenance costs, and expertise which is fixed

over time, the optimal entry date in a stationary equilibrium will be either immediately, or never.

Thus, assuming an initial stationary equilibrium, investors who choose an infinite stopping time

are then non-experts, and investors who choose a stopping time τ = t are experts.16

Experts allocate their wealth between current consumption, a risky asset, and a riskless

asset. They also choose an optimal stopping time T to exit the market.

V x (w (t, s) , x) = max
cx(x,t,s),T,θ(x,t,s)

E
[∫ T

t

e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(T−t)V n (w (t, s) , x)

]
(8)

s.t. dw (t, s) = [w (t, s) (rf + θ (x, t, s)α (t, s))− cx (x, t, s)− Fxx] ds (9)

+w (t, s) θ (x, t, s)σ (x) dB (t, s) ,

where α (s) is the equilibrium excess return on the risky asset, θ (x, t, s) is the portfolio allocation

to the risky asset by investors with expertise level x at time s, cx (x, t, s) is consumption, Fxx

is the maintenance cost. We include exit for completeness. However, exit will not occur in this

homogeneous model with fixed expertise.

The following proposition states the analytical solutions for the value and policy functions

in our model. We prove this Proposition by guess and verify in the Appendix.

16Outside of a stationary equilibrium, because α is not constant, both entry and exit are possible.
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Proposition 2.1 Value and Policy Functions: The value functions are given by

V x (w (t, s) , x) = yx (x, t, s)
w (t, s)1−γ

1− γ
(10)

V n (w (t, s) , x) = yn (x, t, s)
w (t, s)1−γ

1− γ
(11)

where yx (x) and yn (x) are given by:

yx (x) =

[
(γ − 1) (rf − fxx) + ρ

γ
+

(γ − 1)α2

2γ2σ2 (x)

]−γ
and (12)

yn (x) =

[
(γ − 1) rf + ρ

γ

]−γ
. (13)

The optimal policy functions cx (x, t, s) , cn (t, s) , and θ (x) are given by:

cx (x, t, s) = [yx (x)]−
1
γ w (t, s) , (14)

cn (t, s) = [yn (x)]−
1
γ w (t, s) and (15)

θ (x, t, s) =
α(t, s)

γσ2 (x)
. (16)

Furthermore, the wealth of experts evolves according to the law of motion:

dw (t, s)

w (t, s)
=

(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)

)
dt+

α (t, s)

γσ (x)
dB (t, s) (17)

Finally, investors choose to be experts if the excess return earned per unit of wealth exceeds the

maintenance cost per unit of wealth:

α2 (t, s)

2σ2 (x) γ
≥ fxx. (18)

We define x as the lowest level of expertise amongst participating investors, for which

Equation (34) holds with equality. Note that the law of motion for wealth is a sort of weighted

average of the return to the risky and riskless assets, as determined by portfolio choice, net of

consumption. The drift and volatility of investors’ wealth are increasing in the allocation to

the risky asset. This mechanism has important implications for the wealth distribution in the

stationary equilibrium of our model.

In our model, wealth dynamics are driven by portfolio performance. In practice, asset

manager wealth is also affected by fund inflows and outflows. Although one can interpret
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effective volatility to include shocks from fund flows, these shocks are not performance related.

Introducing a feedback effect between performance and wealth breaks the linearity of the return

process which enables analytic characterizations. In the Appendix, we present a specification

of the model with exogenous fund flows that are increasing and concave in expertise. For this

specification, our main results are preserved. We also note that empirical results on fund flows

and performance within the hedge fund space actually appear to be consistent with our main

specification. In particular, Fung, Hsieh, Naik, and Ramadorai (2008) report that, while hedge

fund fund-of-funds that load on systematic risk exhibit a statistically significant relationship

between fund flows performance, flows into funds which have alpha show no evidence of return-

chasing behavior, i.e. in their study the coefficient of quarterly flows on lagged quarterly returns

is not statistically significant. They argue that this difference is due to the greater sophistication

of institutional hedge fund investors, relative to retail mutual fund investors.

2.2 The Distribution(s) of Expert Wealth

The total amount of wealth allocated to the complex risky asset, as well as the distribution

of expert wealth across expertise levels, are key aggregate state variables for the the first and

second moments of the equilibrium returns to the complex risky asset. Once the participation

decision has been made, given that we do not clear the market for the riskless asset, the

wealth of non-experts is irrelevant for the returns to the complex risky asset. We solve for the

cross sectional distribution of expert wealth in a stationary equilibrium of our model. Given

that expertise is fixed over time for each investor, constructing the wealth distribution at

each expertise level is sufficient to obtain the cross-sectional joint distribution of wealth and

expertise.

First, we note that in order to construct a stationary equilibrium given that experts’ wealth

on average grows over time, it is convenient to study the ratio z (t, s) of individual wealth to

the mean wealth of agents with highest expertise, E [w|x̄ (t, s)].

z (t, s) ≡ w (t, s)

E [w|x̄ (t, s)]
.

We can replace wealth w with wealth share z in the value and policy functions without conse-

quence, due to the homogeneity described in Proposition 2.1. Next, note that the law of motion

for the growth rate of mean wealth of agents with a given level of expertise x is given by

dE[w|x (t, s)]

E[w|x (t, s)]
≡ [g (x)] dt.
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where g (x) is determined in equilibrium. Define the average growth rate amongst agents with

the “highest” level of expertise as g(x̄) ≡ supx g(x). Then, the ratio z (t, s) follows a geometric

Brownian motion given by

dz (t, s)

z (t, s)
=

(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)
− g (x̄)

)
dt+

α (t, s)

γσ (x)
dB (t, s) , (19)

where
rf−fxx−ρ

γ
+ (γ+1)α2(t)

2γ2σ2(x)
− g (x̄) < 0 represents the negative drift, or growth rate.

Let the cross-sectional p.d.f. of expert investors’ wealth and expertise at time t be denoted

by φx (z, x, t) . Without additional assumptions, the relative wealth of lower expertise agents

will shrink to zero. Two methods are commonly used to generate a stationary distribution.

The first, for example used in Benhabib, Bisin, and Zhu (2016), is to employ a life cycle model,

or Poisson elimination of agents. The second, employed by Gabaix (1999), is to introduce

a reflective or regulating barrier at a minimum relative size.17 We impose a reflective, or

regulating, barrier at a minimum wealth share, zmin, which is relative to the average wealth

of agents with the highest level of expertise. This reflective barrier implies that the growth

rate of any individual agent not at the barrier, even those with the highest level of expertise,

will grow more slowly than the mean wealth of the highest expertise agents. We adopt the

assumption of a minimum wealth share because it leads to a more elegant expression for the

wealth distribution. In particular, wealth shares conditional on expertise are characterized

by a simple Pareto distribution. At the same time, this assumption conveniently avoids the

need to solve the fixed point problem determining the initial conditions for wealth needed

to generate a Pareto distribution with Poisson death.18 Since the reflective boundary mainly

affects investors with very low wealth shares (less than 1% in our calibration), decisions near the

boundary matter little for equilibrium pricing, and elegance and parsimony comes at a reduced

cost. Importantly, using reflecting dynamics, we are able to construct stationary distributions

that can be easily studied analytically.

We adopt an interpretation of possible punishment vs. rescue at zmin which ensures that

policies are not distorted there. Then, since both time and state variables are continuous in

our model, if policies are not distorted at zmin, then they will not be distorted elsewhere. The

17See Harrison (2013), who also notes that the “reflected geometric Brownian motion process” might more
precisely be called a regulated Brownian motion. Gabaix (1999) constructs a model of the city size distribution,
and thus his share variable represents relative population shares. See also the Appendix of that paper for a
related method of constructing a stationary distribution using a Kesten (1973) process, which introduces a
random shock with a positive mean to normalized city size.

18Adopting the assumption of Poisson death with a fixed initial wealth, for example, would instead lead to
a double Pareto distribution, with a cutoff at the initial value of wealth. For example, see Benhabib, Bisin,
and Zhu (2016) for the wealth distribution under the alternative assumption of Poisson elimination in a closely
related model. Formulas for wealth distributions with Poisson death are available upon request.
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strategy we employ is to ensure that the value at zmin from adopting the optimal policy functions

under Brownian wealth share dynamics is equal to the value of adopting those policies given

that with some probability the investor will be punished by being forced to exit, and with some

probability the investor will be rewarded by being able to remain in the market and maintain

a wealth share of zmin. In the case of exit, we assume the investor is replaced by a new entrant

with wealth share zmin and the same level of expertise x as the exiting agent.

Proposition 2.2 The value and policy functions under reflecting, or regulated, Brownian dy-

namics for wealth shares, given by:

dzt/zt = µzdt+ σzdBt for zt > zmin

and

dzt/zt = max (µzdt+ σzdBt, 0) forzt ≤ zmin,

with µz and σz defined in Equation (19), are given by the solution to the alternative model in:

V r (z (t, s) , x) = max
cr(x,t,s),T,θr(x,t,s)

E

[∫ s′

t

e−ρ(s−t)u (cr (x, t, s)) ds

+e−ρ(s′−t) [(1− q)V r (zmin, x) + qV n (z (t, s) , x)]
]

s.t. dz (t, s) = [z (t, s) (rf + θr (x, t, s)α (t, s))− cr (x, t, s)− Fxx] ds

+z (t, s) θr (x, t, s)σ (x) dB (t, s) ,

where s′ < T is the first time that an agent’s wealth falls below zmin. The value and policy

functions for this alternative model are equivalent to those under the true Brownian dynamics

in the model of Equations (29) - (30), for the appropriately defined probability, q.

The proof, along with the definition of the punishment probabilities are given in the Appendix.19

With this result in hand, we derive the stationary distributions for wealth shares. The

Kolmogorov forward equations describing the evolution of the wealth distributions, conditional

19Our proof should enable more researchers to use reflecting dynamics to ensure stationarity in models with
endogenous policies, especially if analytically tractable Pareto distributions are desired. In the model of Gabaix
(1999), which introduces the method of using reflecting dynamics to generate a stationary Pareto distribution,
cities do not choose size. This is in contrast to models such as ours with endogenous state variables.
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on expertise level x and taking α(t) as given, can be stated as follows:20

∂tφ
x (z, x, t) =− ∂z

[(
(rf + θ (x, t)α (t, s))− [yx (x)]−

1
γ − fxx − g (x̄)

)
zφx (z, x, t)

]
(20)

+
1

2
∂zz
(
[zθ (x, t)σ(x)]2 φx (z, x, t)

)
= −∂z

[(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)
− g (x̄)

)
zφx (z, x, t)

]
+

1

2
∂zz

[(
z
α (t, s)

γσ (x)

)2

φx (z, x, t)

]
.

We then study the stationary distribution of wealth shares, in which ∂tφ
x (z, x, t) = 0 ∀x.

We take as given, for now, that α(t, s) will be constant, as in the stationary equilibrium we

define in the following section. This will be true given a stationary distribution over investors’

individual state variables. A stationary distribution of wealth shares φx (z, x) satisfies the

following equation:

0 = −∂z
[(

rf − fxx − ρ
γ

+
(γ + 1)α2

2γ2σ2 (x)
− g (x̄)

)
zφx (z, x)

]
(21)

+
1

2
∂zz

[(
z

α

γσ (x)

)2

φx (z, x)

]
.

We use guess and verify to show that the stationary distribution of wealth shares at each

level of expertise is given by a Pareto distribution with an expertise-specific tail parameter.

This tail parameter, which we denote by β, is determined by the drift and volatility of the

expertise-specific law of motion for wealth shares. Intuitively, the larger the drift and volatility

of the expertise-specific wealth process, the fatter the tail of the wealth distribution at that

level of expertise will be.

Proposition 2.3 The stationary distribution of wealth shares φx (z, x) has the following form:

φ(z, x) ∝ C(x)z−β(x)−1,

20See Dixit and Pindyck (1994) for a heuristic derivation, or Karlin and Taylor (1981) for more detail.
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where

β(x) = C1
σ2 (x)

α2
− γ ≥ 1,

C1 = 2γ (fxx + ρ− rf + γg (x̄)) ,

C(x) =
1∫

z−β(x)dz
=
C1

σ2(x)
α2 − γ

z
−C1

σ2(x)

α2 +γ

min

.

See the Appendix for the Proof. Note that, in this proof, we also show that, in the sta-

tionary distribution, β > 1, which ensures a finite integral, and confirms that the distribution

satisfies stationarity. The following Corollary solves for the tail parameter of the highest ex-

pertise agents, as well as the average growth rate amongst these agents. Given this growth

rate, we can write the tail parameter for any level of expertise as a function of the coefficient of

relative risk aversion, the minimum wealth share, and the ratio the effective variance relative

to the effective variance for the highest expertise agents. This is convenient, because it clearly

shows the dependence of the thickness of the right tail of the relative wealth distribution on

expertise.

Corollary 2.1 For the highest expertise agents, we have

β (x̄) =
1

1− zmin/z̄
= C1

σ2 (x̄)

α2
− γ

where z̄ is mean of normalized wealth of experts with highest expertise,

z̄ =

∫ ∞
zmin

zφ(z, x̄)dz = zmin

[
1 +

1

β (x̄)− 1

]
and

g (x̄) =
rf − fxx − ρ

γ
+

α2

2γσ2 (x̄)
+

α2

2γ2σ2 (x̄)

1

1− zmin/z̄

For all other expertise levels, we have

β (x) =

(
γ +

zmin/z̄

1− zmin/z̄

)
σ2 (x)

σ2 (x̄)
− γ.

The parameter β(x) controls the rate of decay in the tail of each expertise-specific wealth
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distribution. We now have two expressions for this parameter:

β(x) = 2γ (fxx + ρ− rf + γg (x̄))
σ2 (x)

α2
− γ, (22)

from Proposition 2.3 and

β (x) =

(
γ +

zmin/z̄

1− zmin/z̄

)
σ2 (x)

σ2 (x̄)
− γ. (23)

from Corollary 2.1. The smaller is β, the more slowly the wealth share distribution decays,

and the fatter is the upper tail. Both equations clearly show that β(x) an increasing function

of expertise level volatility, σ (x), and thus a decreasing function of expertise, x. That is,

the wealth distribution of experts with a higher level of fixed expertise has a fatter right tail.

Investors with higher expertise allocate more wealth to the risky asset, which increases the mean

and volatility of their wealth growth rate. Both a higher drift, and a wider distribution of shocks,

lead to a fatter upper tail for wealth. Moreover, Equation (23), in which the dependence of

the tail parameter on expertise is given by σ2(x)
σ2(x̄)

, shows that if the relation between expertise

and effective volatility is steeper, then the difference in the size of the right tails of the wealth

distribution across expertise levels increases. In equilibrium, variation in effective volatilities

in complex asset markets will be driven both by the functional form for effective volatility, and

by participation decisions which determine how different effective volatilities of participating

agents can be given equilibrium pricing. Finally, we note that the degree of wealth inequality

within each expertise level can be measured by 1
2β(x)−1

, which is the Gini coefficient for each

expertise level wealth distribution, representing twice the area between the Lorenz curve and

the equidistribution line. High expertise levels exhibit greater size “inequality”. Note that

if the relation between expertise and effective volatility is steeper, then the difference in size

inequality across expertise levels increases. We show in the Appendix that while differences in

portfolio choice driven by differences in effective volatilities lead to greater differences in decay

parameters, this is not true for variation in portfolio choice driven by higher excess returns or

lower risk aversion.

2.3 Aggregation and Stationary Equilibrium

The equilibrium market clearing α is determined by equating supply and demand:

S (t) =

∫
λ (x) θ (x, t)W (x, t) dx.
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In order to ensure that the supply of the complex risky asset does not become negligible as

investor wealth grows, we assume that the supply grows proportionally to the mean wealth of

the highest expertise investors. That is, we assume:

dS (t)

S
= g (x̄) dt.

For convenience, we assume that the support of expertise is bounded above by x̄, although

most of our results only require that σ(x) satisfies limx→∞ σ(x) = σ > 0.

We define a stationary equilibrium for detrended economies. We define detrended aggregate

investment in the complex risky asset to be I, defined as:

I ≡
∫
λ (x) I (x) dx, (24)

where I (x) is the detrended total expertise level investment in the complex risky asset, namely,

I (x) =
α

γσ2 (x)
Z (x) , (25)

where Z (x) is the total expertise level wealth share,

Z (x) = zmin

(
1 +

1

β(x)− 1

)
.

This is the well-known expression for the mean of a Pareto distribution.21 The condition which

determines the market clearing α in a stationary equilibrium of a detrended economy equates

detrended investment to detrended asset supply.

Definition 2.1 A stationary equilibrium consists of a market clearing α, policy functions for

all investors, and a stationary distribution over investor types i ∈ {x, n}, expertise levels x,

and wealth shares z, φ(i, z, x, t), such that given an initial wealth distribution, an expertise

distribution λ(x), and parameters describing risk aversion, investors’ subjective discount factor,

the risk free rate, entry and maintenance costs, total volatility, minimum wealth shares, and

detrended risky asset supply, {γ, ρ, rf , fnx, fxx, σν , zmin, and S}, the economy satisfies:

1. Investor optimality: Investors choose participation in the complex risky asset market ac-

cording to Equation (34), as well as optimal consumption and portfolio choices

{cn (t) , cx (x, t) , θ (x, t)}∞t=0 according to Equations (14)-(16), such that their utilities are

maximized.

21For a simple derivation, see the proof of Corollary 2.1.
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2. Market clearing: In a stationary equilibrium, we have:

I ≡
∫
λ (x) I (x) dx = S, (26)

3. The distribution over all individual state variables is stationary, i.e. ∂tφ (i, z, x, t) = 0.

3 Results

3.1 Analytical Asset Pricing Results

With policy functions, stationary distributions, and the equilibrium definition in hand, we turn

to our asset pricing results. We define a more complex asset as one that introduces more

idiosyncratic risk. Comparing across assets, we use σν to denote the total volatility of the asset

before expertise is applied, so that the risk in each investor’s asset is σ(σν , x), and is increasing

in the first (asset-specific) argument, and decreasing in the second (investor-specific) input.

We provide specific examples below, but begin with any general function satisfying these two

properties. Importantly, we describe conditions under which more complex assets, or assets

which introduce more idiosyncratic risk, have lower participation despite higher α’s and higher

Sharpe ratios. A key requirement is complementarity of expertise and complexity, meaning that

the higher risk of more complex assets more negatively impacts investors with lower expertise.

We begin by studying comparative statics over the equilibrium market clearing α. Although

we focus on comparative statics over total volatility, we also provide results for the market

clearing α for changes other parameters which might proxy for asset complexity, such as the

cost of maintaining expertise, or investor risk aversion. Next, we analyze individual Sharpe

ratios. We emphasize across-investor heterogeneity in changes in the risk return tradeoff as

total volatility changes. Because other parameters which might also vary with complexity, such

as γ or fxx, do not change investor-specific volatility, the results for individual Sharpe ratios

are the same as those for α. Finally, we study market level Sharpe ratios, with a focus on the

effects of changes in total volatility on the intensive and extensive margins of participation by

investors with heterogeneous expertise.

Investor Demand, Aggregate Demand, and Equilibrium α We first describe the com-

parative statics for demand conditional on investors’ expertise levels in Lemma 3.1.

Lemma 3.1 Using Equation (25) for investor demand conditional on expertise, x, we have

following comparative statics, ∀x: ∂I(x)
∂σ2(x)

< 0, ∂I(x)
∂σν

< 0, ∂I(x)
∂α

> 0, ∂I(x)
∂γ

< 0, and ∂I(x)
∂fxx

< 0.
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Demand for the risky asset at each level of expertise is increasing in the squared investor-

specific Sharpe ratio, and it is increasing in α. Demand is decreasing in effective variance, total

volatility, risk aversion, and the maintenance cost.

With expertise level total demands in hand, we can construct comparative statics for ag-

gregate demand. We cannot express the equilibrium excess return in closed form. However,

the following Proposition shows that the equilibrium excess return, α, and aggregate demand,

I, form a bijection. This uniqueness result in turn ensures that α can easily be solved for

numerically as the unique fixed point to Equation (26).

Proposition 3.1 Aggregate market demand for the complex risky asset is an increasing func-

tion of the excess return, α, and α and I form a bijection. Mathematically,

∂I

∂α
> 0.

Proposition 3.2 provides comparative statics over the aggregate demand for the complex risky

asset, I. Using the result in Proposition 3.1, these comparative statics also hold for α.

Proposition 3.2 Using the market clearing condition, we have that the following comparative

statics hold for aggregate investment in the complex risky asset in partial equilibrium:

1. ∂I
∂σν

< 0, thus α is an increasing function of total risk

2. ∂I
∂γ
< 0, thus α is an increasing function of risk aversion

3. ∂I
∂fxx

< 0, thus α is an increasing function of the maintenance cost.

In partial equilibrium, demand for the risky asset is decreasing in total volatility, risk aversion,

and the maintenance cost. As a result, in general equilibrium α is increasing in total volatility,

risk aversion, and the maintenance cost. An increase in these parameters proxies for greater

asset complexity, and thus our model predicts that α will be higher in more complex asset

markets.

We now turn to the effect of the efficiency of the joint distribution of wealth and expertise on

equilibrium pricing. In particular, we demonstrate that the equilibrium required excess return

on the complex risky asset is decreasing in the amount of wealth commanded by agents with

higher levels of expertise. The proof appears in the Appendix.

Proposition 3.3 If ∂σ(x)
∂x

< 0, and Λ1 exhibits first-order stochastic dominance over Λ2, I (Λ1) ≥
I (Λ2) . As a result α(Λ1) < α(Λ2).
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The wealth distribution at each expertise level is a Pareto distribution with an expertise-

specific tail parameter. By shifting the distribution of expertise rightward, leading to a new

distribution with a relatively larger fraction of higher expertise investors, relatively more wealth

will reside with agents with higher expertise. Thus, with any rightward shift, the joint distribu-

tion of wealth and expertise becomes more efficient. Moreover, because the wealth distribution

at higher expertise levels exhibits fatter right tails, there is an additional direct effect on overall

wealth from a rightward shift in the distribution of expertise. Accordingly, Proposition 3.3

shows that if the density of experts shifts to the right, then demand for the complex risky asset

will increase, and the required equilibrium excess return will decrease. The equilibrium excess

return is decreasing in the amount of wealth which resides in the hands of agents with higher

expertise. Note that this result can also be interpreted to state that in asset markets in which

higher levels of expertise are more widespread, or less rare, equilibrium required returns will

be lower. We argue that the scarcity of relevant expertise is increasing with asset complexity,

again implying a higher α in more complex markets.

Investor-specific Sharpe ratios, Investor Participation, and Market-level Sharpe

ratios With the analysis of equilibrium excess returns in hand, we now turn to the equilibrium

risk-return tradeoff at the investor and market-level as described by the investor-specific, and

market-level Sharpe ratios. We emphasize the variation across individual Sharpe ratios as a

function of expertise; all investors face a common market clearing α, but their effective risk

varies. For the market-level Sharpe ratio, two effects are present. First, there is the effect of

any changes on parameters on the individual Sharpe ratios of participants. Second, there is a

selection effect, or the effect on participation. We provide an intuitively appealing condition,

complementarity between expertise and complexity, under which participation declines as the

asset becomes more complex. We focus on the equally weighted market-level equilibrium Sharpe

ratio in our analysis. In addition to offering cleaner comparative statics because it does not

depend on investor portfolio choices and market shares, the equally weighted Sharpe ratio

represents the expected Sharpe ratio that an investor who could pay a cost to draw from the

expertise distribution above the entry cutoff would earn. In that sense, it is the “expected

Sharpe ratio”. Note that the Sharpe ratio for non-experts is not defined.

Investor-specific Sharpe ratios: We define the investor-specific Sharpe Ratio as:

SR (x) =
α

σ (x)
.
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We provide results for how investor-specific Sharpe ratios change as total volatility changes

under the three possible cases for the elasticity of investor-specific risk with respect to total

volatility in Proposition 3.4. The sign of this elasticity is a key determinant of our Sharpe ratio

results.

Proposition 3.4 The comparative statics for the investor-specific Sharpe ratios with respect

to total volatility depend on whether expertise and complexity display complementarity. Specif-

ically, the results depend on which of the following three possible cases for the elasticity of

investor-specific risk with respect to total volatility, applies:

1. Case 1, Constant Elasticity: If ∂σ(x)/σ(x)
∂σν/σν

is a constant, that is

∂ ∂σ(x)/σ(x)
∂σν/σν

∂x
= 0,

we must have that SR (x) is either an increasing or a decreasing function of total risk for

all expertise levels.

2. Case 2, Increasing Elasticity: If ∂σ(x)/σ(x)
∂σν/σν

is an increasing function of expertise, that

is
∂ ∂σ(x)/σ(x)

∂σν/σν

∂x
> 0,

then there is a cutoff level x∗, such that for all x < x∗, we have ∂SR(x)
∂σν

> 0; and for all

x > x∗, we have ∂SR(x)
∂σν

< 0. Further, x∗ exists if for any small ε < 10−6

(0, ε) ⊆
{
∂σ (x) /σ (x)

∂σν/σν
| for all x

}
⊆ [0,∞).

3. Case 3, Decreasing Elasticity (complementarity): If ∂σ(x)/σ(x)
∂σν/σν

is a decreasing

function of expertise, that is

∂ ∂σ(x)/σ(x)
∂σν/σν

∂x
< 0,

then there is a cutoff level x∗, such that for all x < x∗, we have ∂SR(x)
∂σν

< 0; and for all

x > x∗, we have ∂SR(x)
∂σν

> 0.

Since individual Sharpe ratios are ratios of excess returns relative to effective volatilities,

variation in Sharpe ratios as total volatility changes depend on the elasticity of excess returns
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relative to the elasticities of effective volatilities as total volatility changes. This is intuitive, as

these elasticities measure the equilibrium percentage change in excess returns vs. the percentage

change in effective volatilities as underlying total risk varies. The change in α is aggregate,

the same for all investors. So, the changes in individual Sharpe ratios with respect to changes

in total volatility depend on the expertise-specific percentage changes in effective volatility

relative to the percentage change in total volatility. Proposition 3.4 demonstrates that the

effect of an increase in total volatility on individual Sharpe ratios varies in the cross section,

except in the special case of Case 1. If the elasticity of effective volatilities as total volatilities

changes is the same for all investors (Case 1), then the percentage change in α relative to the

percentage change in effective volatility is the same for all investors. On the other hand, if the

elasticity of effective volatilities with respect to total volatility is increasing in expertise (Case

2), then Sharpe ratios increase below a cutoff level of expertise and decrease above as total

volatility increases. Finally, if this elasticity is declining in expertise, so that higher expertise

investors face smaller increases in effective volatility as total volatility increases –expertise and

complexity are complementary–, (Case 3), then Sharpe ratios increase above a cutoff level of

expertise and decrease below. In this case, the economic rents from expertise are higher in

more complex markets, characterized by higher total volatility.

We focus our analysis on Case 3, because it leads to the empirically plausible implication

that more complex assets, with higher total volatilities, have lower participation despite having

persistently elevated excess returns. Thus, we argue that the decreasing elasticity case is the

most relevant for describing a long-run, stationary equilibrium in a complex asset market.

Moreover, it seems intuitive that the difference in effective volatilities between more and less

complex assets would be smaller for higher expertise investors.

As a concrete example, consider the following two fixed income arbitrage strategies consid-

ered by Duarte, Longstaff, and Yu (2006). Mortgages are highly complex securities containing

embedded prepayment options. MBS payoffs are affected by consumer behavior, house prices,

and credit conditions, as well as interest rates. There is no agreed upon pricing model, and

investors’ strategy implementations vary widely as a result. By contrast, swap spread arbitrage

follows a fairly straightforward long-short rule based on current LIBOR swap rates relative to

Treasury yields and repo rates. The way this strategy is implemented is quite similar across

investors. Accordingly, Duarte, Longstaff, and Yu (2006) show that mortgage related strategies

(MBS) earn higher alphas, and Sharpe ratios, than simple swap spread arbitrage strategies.

We argue, in agreement with their motivation and findings, that expertise is more valuable in

MBS arbitrage. Put another way, the difference in the risk which investors face in MBS vs.

Treasuries is decreasing in investor expertise. To be sure, highly sophisticated investors face
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more risk in MBS than in treasuries. However, the difference in effective risk across these two

fixed income strategies is not as great for expert investors as it is for an inexpert investor,

consistent with Case 3 in Proposition 3.4.

Investor Participation Before analyzing market-level Sharpe ratios, we first describe in-

vestor participation. There are two key inputs into the market-level risk return tradeoff. First,

incumbents’ individual Sharpe ratios change. Second, as equilibrium α changes, participation

also changes. This selection effect plays a key role in determining comparative static results in

general equilibrium. We show in the Appendix that participation increases with total volatil-

ity in Cases 1 and 2 of Proposition 3.4. If all elasticities of σ(x) with respect to σν are the

same, or if they are lower for lower expertise investors, then participation will increase with

total volatility. This is intuitive because α must increase with total volatility σν by enough for

lower expertise investors to help to clear the market. Because it is intuitive that participation

should decrease with asset complexity, we thus focus on results under Case 3 of Proposition

3.4. For this case, we provide a natural condition under which participation declines as the

asset becomes more complex and total volatility increases.

Proposition 3.5 Define the entry cutoff x as in Equation (34). Participation declines

∂x

∂σν
> 0

if the following conditions hold. Condition 1 is necessary. Condition 2 is sufficient.

1. Complementarity of Complexity and Expertise (Case 3 of Proposition 3.4):

∂
∂σ(x)/σ(x)
∂σν/σν

∂x
< 0, and,

2. Non-representativeness of Highest Elasticity Participants:

lσνsup >

(
1 +

1

1 + B (x)

)
E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]
,

where lσνsup is defined to be the highest elasticity of all participating investors’ effective

volatility with respect to total volatility, and

B (x) =
2

β (x)

β (x) + γ

β (x)− 1
.

The first condition, namely that the elasticity of effective volatility with respect to total

volatility is decreasing in expertise, is necessary for participation to decline as complexity,

24



and total volatility, increase. To see this, consider the market clearing condition. For the

market to clear without the participation by, and demand from, lower expertise investors as

total volatility increases, it must be that higher expertise investors’ demand is less adversely

affected. The second condition gives a sufficient condition for participation to decrease if the

first condition is satisfied. This condition states that the elasticity of the agent with the highest

sensitivity of effective volatility to total volatility, which in Case 3 of Proposition 3.4 will be the

lowest expertise agent who participates, must be sufficiently different from the average across

participants, times a constant. Note that the constant will be near one if β is close to one,

which it will be as it is the tail parameter from a Pareto distribution. The function B(x) gives

the elasticity of the mean wealth at expertise level x with respect to total volatility. Intuitively,

what is necessary for participation to decline as total volatility increases is that there is enough

variation in the effect of the change in total volatility across agents with high and low expertise

so that α does not need to increase enough to satisfy the marginal investor or to entice lower

expertise investors to participate. Section 5 provides numerical examples, provides additional

intuition, and illustrates that the parameter space for which the second condition is satisfied is

large.

In sum of the results so far, under the conditions for complementarity between expertise and

complexity in Proposition 3.5, our model generates higher persistent α’s and lower participation,

despite free entry, as total volatility and asset complexity increase. Thus, we argue that more

complex assets, in addition to exposing investors to more risk overall, impose a larger difference

in risk across investors with different levels of expertise.

Equilibrium market-level Sharpe Ratio We define the equally weighted market equilib-

rium Sharpe ratio as:

SRew = E

[
α

σ (x)
|x ≥ x

]
.

We focus on comparative statics for the equally weighted market equilibrium Sharpe ratio,

however we note the following Corollary holds for the value weighted market Sharpe ratio: 22

Corollary 3.1 In Case 3 of Proposition 3.4, in which expertise and complexity are comple-

mentary, and in which participation declines with complexity, we have that an increase in

the equally weighted Sharpe ratio as total volatility increases implies an increase in the value

weighted Sharpe ratio.

We omit the formal proof, which is straightforward. Intuitively, the value weighted Sharpe

ratio weights higher expertise investors’ Sharpe ratios more heavily, since they are wealthier

22See the Appendix for the definition of the value-weighted market equilibrium Sharpe ratio.
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and they allocate a greater fraction of wealth to the risky asset. Because the value weighted

Sharpe ratio is a more complex equilibrium object, we focus on the equally weighted Sharpe

ratio, SRew to develop our results.

The following Proposition provides sufficient conditions under which SRew increases with

total volatility σν in Case 3 of Proposition 3.4. The other cases are presented in the Appendix,

which also contains the proof. It is possible that the SRew increases with total volatility

even if the increase impacts all investors equally, or more negatively impacts higher expertise

investors. However, we emphasize that the joint observation of participation declining and the

SRew increasing as total volatility changes is possible only in Case 3, in which expertise and

complexity are complementary.

Proposition 3.6 The equally weighted market Sharpe ratio is increasing with total risk in

general equilibrium, i.e.,
∂SRew

∂σν
> 0,

If the following sufficient conditions are satisfied:

1. Complementarity of Complexity and expertise (Case 3 of Proposition 3.4):

∂
∂σ(x)/σ(x)
∂σν/σν

∂x
< 0, and,

2. Non-representativeness of Marginal Participants:

−∂ [1− Λ (x)] / [1− Λ (x)]

∂σν/σν︸ ︷︷ ︸
elasticity of participation

difference btw marginal SR and average︷ ︸︸ ︷(
1− SR (x)

SRew

)
> −∂SR (x) /SR (x)

∂σν/σν

∣∣∣
x=x︸ ︷︷ ︸

elasticity of marginal SR

(27)

The above conditions give us the sufficient conditions which yield an increasing Sharpe ratio

when total volatility increases. We show an equivalent statement of the second condition, in

which we substitute out the equilibrium Sharpe ratios with the underlying exogenous param-

eters and functions, in the Appendix. We use Equation (27) here to provide intuition. From

Case 3 of Proposition 3.4, we have that individual Sharpe ratios increase above, and decrease

below, a threshold level of participating expertise levels, x∗ > x, when total volatility increases.

Thus, for the average Sharpe ratio to increase, the Sharpe ratios of participants with declining

Sharpe ratios cannot be too important in determining the average. The greater holdings of

higher expertise agents makes it more likely that the value weighted Sharpe ratio increases.

For the equally weighted Sharpe ratio, participants above and below x∗ are weighted according

to the distribution of expertise. Thus, what is required is that there are not too many experts
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between x and x∗, or that for these participants between x and x∗, effective volatility does not

increase by too much relative to the equilibrium average return α. If the Sharpe ratio does de-

cline substantially for low expertise participants, the second condition ensures that the Sharpe

ratio for these participants is not representative of the average over all participants. Equation

(27) precisely formalizes this intuition: On the left hand side, the first term represents the elas-

ticity of participation with respect to total volatility. In Case 3 of Proposition 3.4, participation

is decreasing and so ∂[1−Λ(x)]/[1−Λ(x)]
∂σν/σν

is negative, making this first term positive after applying

the negative sign. The second term involves the relative value of the marginal Sharpe ratio to

the population weighted average. It has a maximal value of one, and is closer to one when the

Sharpe ratio of the lowest expertise agent is very small relative to the average Sharpe ratio. On

the right hand side is the elasticity of the marginal Sharpe ratio with respect to total volatility.

This term is always negative before applying the negative sign. Intuitively, on the right hand

side is a force against the market Sharpe ratio increasing. If the marginal agent’s Sharpe ratio

is very adversely affected by the increase in total volatility, the effect on the market Sharpe

ratio is strongly negative. On the left hand side, then, are two positive terms which offset this

negative effect on the market Sharpe ratio by more the larger they are. The first term is large

when a large mass of low expertise agents (with low Sharpe ratios) do not participate. The

second term is large if the marginal agent is not representative of the market average; if for the

marginal agent the decline in the Sharpe ratio is large but the effect is small for the average

participant then the market Sharpe ratio will still increase. In short, this condition is easier to

satisfy if: First, participation is very sensitive to total volatility, because then many low Sharpe

ratio agents will drop out of the market. Second, if the difference between the marginal and

average Sharpe ratios is large, because then the lower Sharpe ratios of the marginal agents are

not representative, and finally if the marginal Sharpe ratio is not too sensitive to total volatility.

Section 5 provides numerical examples, provides additional intuition, and illustrates that the

parameter space for which the second condition is satisfied is large.

In summary, we note that both for participation to decrease, and for the equilibrium Sharpe

ratio to increase with asset complexity, similar conditions suffice. The first is that expertise and

complexity are complementary. The second is that marginal participants are not representative

of average market participants. This second condition ensures that markets can clear without

low expertise agents, and that lower expertise participants with declining Sharpe ratios are not

important for market equilibrium outcomes. Under these conditions, our model delivers a ratio-

nal explanation for why more complex assets can generate a higher α, a higher equally-weighted

equilibrium market Sharpe ratio, but have low participation, despite free entry. Intuitively, as

in a standard industrial organization model, the superior volatility reduction technologies of
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more expert investors provide them with an excess of (risk-bearing) capacity, which serves to

reduce the entry incentives of newcomers despite attractive conditions for incumbents.

4 Extension: Two Complex Assets

In this section, we describe how the intuition from comparative statics across stationary equilib-

ria can be applied to a single economy with multiple complex assets. In particular, we consider

an economy with two risky assets with different total volatilities given by σLν and σHν , where

σHν > σLν . We assume that agents can only invest in one risky asset; they must specialize to

take advantage of their expertise. The following Proposition gives a condition for which higher

expertise agents specialize in the more complex risky asset, with total volatility σHν .23

Proposition 4.1 In a two complex asset economy, higher expertise agents choose to specialize

and invest in the more complex asset, with total volatility σHν if and only if

∂ ∂σ(x)/σ(x)
∂σν/σν

∂x
< 0.

The proof appears in the Appendix. The intuition behind this result is very similar to the

intuition for the single asset economy results for the variation in individual Sharpe ratios as

total volatility varies. The condition is the same as Condition 3 for declining elasticities, or

complementarity between complexity and expertise, in Proposition 3.4. Under this condition,

for higher expertise agents, the market clearing α will adequately compensate them for the

higher total risk. Lower expertise agents are not adequately compensated for the higher risk

of the more complex asset. Note that this necessarily implies that the α of the more complex

asset will be higher, because otherwise the high expertise agents would choose the less complex

asset.

5 Numerical Examples and Concentration Results

This section presents numerical results and comparative statics. We provide additional intuition

for our analytical results, and develop new results for wealth concentration across assets with

different complexity. We focus on a functional form for effective volatility which satisfies the

condition in Case 3 from Proposition 3.4, in which the elasticity of effective volatility with

23The analysis can be extended to multiple risky assets, and we omit the conditions under which agents with
higher expertise will invest in σLν .
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respect to total volatility declines with expertise.24 Specifically, and notationally reintroducing

the dependence of σ(x) on total volatility σν , we specify that:

σ2 (σν , x) = a+ x−bσ2
ν . (28)

This function is increasing in total volatility at a rate that decreases with expertise, i.e. it

satisfies:
∂σ (σν , x)

∂σν
> 0,

and,

∂ ∂σ(σν ,x)/σ(σν ,x)
∂σν/σν

∂x
< 0.

Numerical Comparative Statics: Asset Pricing and Participation We begin with

simple, illustrative numerical comparative statics for our main asset pricing and participation

results. The model generates closed form policy functions and wealth distributions conditional

on expertise levels. To provide intuition for the effects of equilibrium pricing, we provide the

comparative statics in both partial equilibrium and general equilibrium. In partial equilibrium,

the excess return is given exogenously, and held fixed, while aggregate demand (and hence

implicitly supply) varies. In general equilibrium, the excess return is computed endogenously

given a fixed supply of the risky asset. Because α and I form a bijection (Proposition 3.1

provides conditions for which they are one to one and onto), for any given supply of the

complex risky asset, we can find the unique solution to the fixed point problem determining α

through market clearing. The Appendix describes the solution algorithm.

Our baseline parameters are summarized in Table 1. The time interval is one quarter. The

risk-free rate, subjective discount factor, and the maintenance cost are all set to 1%. The

coefficient of relative risk-aversion is 5. The total standard deviation of the risky asset return

is 40%. We set a = 0.48% and b = 1.5. This implies that the highest expertise investors can

eliminate 83% of total risk, and face an effective standard deviation of 6.8%. And the marginal

expertise investors at entry can eliminate 45% of total risk, and face an effective standard

deviation of 22.1%, which is about half that of total volatility. The minimum wealth share is

set to 0.01.

The log-normal distribution of expertise has a mean of 0 and volatility of 4. We choose 500

grid points for expertise levels between the lowest and highest levels of expertise. The lowest

expertise level is pinned down by Equation (18) for participation. We choose a value of 10,000

24Results for the other cases are available upon request.
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for the highest expertise level. The value ensures that the policy functions for the most expert

investors very closely approximate the limiting case of infinite expertise, and that there is no

mass point at the upper bound. The density of expertise on the grid points is then chosen to

approximate a truncated log-normal distribution.

First, we provide intuition for the sufficient Condition 2 in Proposition 3.5, which requires

non-representativeness of the highest elasticity participants, and the sufficient Condition 2 in

Proposition 3.6, which requires non-representativeness of marginal participants. When these

two sufficient conditions are satisfied, along with the necessary condition for participation to

decline (Condition 1 in Proposition 3.5 and Proposition 3.6, requiring complementarity between

complexity and expertise), the model generates lower participation, higher excess returns, and

higher Sharpe ratios for more complex assets. It is intuitive that high expertise investors face

smaller differences in Sharpe ratios between simple and complex strategies and assets than do

low expertise investors, i.e. that complexity and expertise are complementary. Figure 1 shows

parameters for which the sufficient conditions in Proposition 3.5 and Proposition 3.6 are sat-

isfied. This figure plots model comparative statics showing when these conditions are satisfied

given variation in the dispersion in expertise (y-axis) and the curvature of effective volatility in

expertise (x-axis). The parameter b in σ2 (σν , x) = a+x−bσ2
ν describes the curvature of effective

volatility. The distribution of expertise, x, is log-normal with a mean of zero and dispersion

given on the y-axis. These two parameters are the key inputs to determining the representative-

ness of high elasticity, marginal, participants, since the curvature parameter determines how

fast effective volatility declines with expertise, and the dispersion in the expertise distribution

determines the relative mass of investors with different levels of expertise. All other parameters

are held at the baseline values in Table 1. The top left panel displays blue for parameters for

which the sufficient Condition 2 in Proposition 3.5, which requires non-representativeness of the

highest elasticity participants, is satisfied, and red for parameters for which it is violated. The

top right panel uses the same color scheme to show that participation is decreasing at when-

ever this sufficient condition is satisfied. The bottom left panel displays blue for parameters for

which the sufficient Condition 2 in Proposition 3.5, which requires non-representativeness of the

highest elasticity participants, is satisfied, and red for parameters for which it is violated. The

bottom left panel uses the same color scheme to show that the equilibrium equally-weighted

Sharpe ratio is increasing whenever this sufficient condition is satisfied. The figure shows that

these two conditions are satisfied for most reasonable parameter combinations.25 It is intuitive

25Indeed, as dispersion in expertise decreases, and effective volatility becomes closer to linear (b decreases),
excess returns become implausibly high. At the boundary for participation to be increasing, the smallest α is
38%. This is because when dispersion in expertise is small, or curvature of effective volatility is low, the total
demand from high expertise investors is smaller, implying that α must be large enough to compensate the low
expertise agents to participate.
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that Condition 2 of Propositions 3.5 and Proposition 3.6 are less likely to be satisfied when b

or σx is small. Both lower curvature in effective volatility, and lower dispersion in expertise,

make it more likely that the marginal participant is more similar to the average participant.

Moreover, when b is small, effective volatility is closer to displaying a constant elasticity of

effective volatility with respect to total volatility. In other words, as b gets small, the elastic-

ities of effective volatility with respect to total volatility are closer to satisfying the constant

elasticity Case 1 of Proposition 3.5, for which participation is increasing. The parameter com-

binations for which the two conditions are satisfied are very similar. The top right and bottom

left panels of Figure 1 together show that Condition 2 of Proposition 3.6 is satisfied whenever

participation is decreasing. Finally, note that the Sharpe ratio appears to be always increasing

in these example economies which satisfy Case 3 of Proposition 3.5.

Figure 2 studies the effects of changes in total volatility, with more complex assets charac-

terized by higher total volatility. Starting in the top row, as total volatility increases, demand

for the risky asset in partial equilibrium decreases, implying a higher α in general equilibrium.

The left hand side of the second row displays the entry cut-off, which is increasing in fun-

damental volatility, consistent with our result in Proposition 3.5. Accordingly, participation,

graphed on the right hand side of the second row, declines. We note that participation declines

by less in general equilibrium, due to the positive effect of total volatility on α, but still the

decline is nearly as large as in partial equilibrium given our parametric assumptions. Finally,

the third row plots the equally weighted standard deviation of the risky asset returns, which are

increasing in both partial and general equilibrium. In partial equilibrium, α is held constant,

so participation declines substantially as total volatility increases. The selection effect then

significantly attenuates the increase in the equally weighted effective volatility. By contrast,

in general equilibrium the increase in α compensates for the increase in total risk somewhat,

participation declines by less, and so the equally weighted effective volatility increases by more

than in partial equilibrium. Finally, the bottom right panel of Figure 2 shows that despite the

fact that the equally weighted standard deviation is increasing, the larger, positive effect of the

increase in α in general equilibrium implies that the equally weighted Sharpe ratio increases,

consistent with Proposition 3.6. Thus, the numerical example confirms the model’s ability

to generate persistently higher α’s and larger Sharpe ratios, but lower participation despite

free entry, for more complex assets characterized by higher total volatility, consistent with the

empirical findings in Pontiff (1996) and Duarte, Longstaff, and Yu (2006).

Numerical Comparative Statics: Wealth Distributions Finally, we present results on

the size distribution of funds in our model, and in the data, across asset classes which are more

and less complex. While we rely on the empirical results in Duarte, Longstaff, and Yu (2006)
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for average returns and Sharpe ratios of complex asset strategies, we must use primary data to

study the size distribution of complex asset investors. While in the model it is straightforward

to define a complex asset as one with a higher total volatility, total volatility (before expertise

is applied) is unobservable in the data. Therefore, we use the implication of our model that

equally weighted Sharpe ratios are higher in more complex asset classes. We use the subset

of the Hedge Fund Research (HFR) data which describes Relative Value fund performance for

single strategy funds, namely the asset-backed fixed income, sovereign fixed income, convertible

bond arbitrage, volatility, and corporate fixed income relative value strategies.26 This choice

is motivated by two main considerations. First, we build on the results in Duarte, Longstaff,

and Yu (2006), who show that excess returns and Sharpe ratios are higher for more complex

fixed income arbitrage strategies. Second, relative value funds should be comprised of long-

short strategies, consistent with the micro-foundation we provide for complex asset investment

strategies. Moreover, long-short strategies are designed to be market neutral and thus average

returns should represent excess returns. For each strategy, we compute the “pseudo” Sharpe

ratio as the ratio of the average industry level return to the cross section average of the fund

level standard deviations of returns. We use the industry level return because in our model

there is one common market clearing alpha. We use the ratio of the industry level return

to the average fund level standard deviation, rather than an average of fund level Sharpe

ratios, as a parsimonious way of eliminating the effect of outliers. We then rank strategies

from most to least complex by these pseudo Sharpe ratios, and provide summary statistics in

Table 2. The last column of Table 2 gives the Gini coefficient describing the concentration

of wealth within each strategy. We compute the Gini coefficient using the wealth share by

wealth deciles. These Gini coefficients appear to be higher for less complex strategies, which

display lower pseudo Sharpe ratios. This might seem surprising given that we have argued that

there is a natural force toward wealth concentration in more complex strategies, if expertise

and complexity are complementary, due to the portfolio choice effect described in Lemma

A.1. While the portfolio choice effect is important, the effect of limited participation tends to

dominate in equilibrium. Equilibrium asset prices limit the amount of heterogeneity amongst

participants, driving lower expertise investors out, especially in more complex asset classes. As

a result, investors who participate in the most complex asset classes, with higher participation

cutoffs, are not as different from each other as those in less complex asset markets. On net,

the selection effect drives the equilibrium wealth concentration down for more complex assets.

Using the example functional form for effective volatility in Equation (28), note that differences

in effective volatilities decline with expertise; the function exhibits decreasing returns. Thus,

26We filter the data using the method in Jagannathan, Malakhov, and Novikov (2010), requiring assets greater
than ten million, and removing back-filled observations.
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as the participation cutoff increases, heterogeneity in effective volatilities decreases. However,

note that even if returns to expertise do not decline quickly with expertise, so that effective

volatilities vary more across investors, participation effects will compensate by decreasing faster

with total volatility. As a result, concentration will tend to decline as total volatility increases

regardless of the degree of decreasing returns.

Table 3 and Figure 6 present a comparison of empirical and model generated wealth dis-

tributions across strategies. For this comparison, we use the pseudo Sharpe ratio to rank

strategies in the data. We use the average Sharpe ratio and Gini coefficient over all strategies

to describe a complex asset with medium complexity. The asset pricing moments for this av-

erage, or medium, complexity asset motivate our baseline calibration in Table 1, and are given

in the columns labeled “model” in Table 3. For the high complexity strategy, in the top row of

Table 3, we target the average Sharpe ratio for the two highest pseudo Sharpe ratio strategies.

Similarly, we target the average Sharpe rato for the lowest pseudo Sharpe ratio strategies for

the least complex strategy in the bottom row. We vary total volatility, σν , between 0.04 and

1.4, holding all other parameters in Equation 28 constant, to match these empirical average

pseudo Sharpe ratios. The implied marginal volatility, which can be computed using the entry

condition described in Equation (34), is 35.6% in the high complexity strategy, 22.08% in the

medium complexity strategy, and 11.73% in the low complexity strategy.

In Figure 6, the top left panel plots the Lorenz curves, or average cumulative wealth shares by

wealth decile for these three strategy groupings. As can be seen, wealth concentration increases

as the average Sharpe ratio decreases. The top right panel compares the concentration of wealth

in the data, and in the model for the baseline parameters, which match the overall average

Sharpe ratio. As is typical, it is difficult to match both the top and bottom of the wealth

distribution simultaneously, however Table 3 shows that the model generates the empirical

average Gini coefficient at the baseline parameters. In addition, the model can closely match

the wealth shares of the top deciles if we do not target the Gini coefficient directly.27 Finally,

the bottom panel of Figure 6 shows that in the model, as in the data, more complex strategies,

with higher Sharpe ratios, display less wealth concentration. Table 3 contains the respective

Gini coefficients, and shows that the lower concentration is driven by the selection effect from

lower participation rates.

27 Our result mirrors that in other prominent studies of wealth distributions. See Castaneda, Gimenez, and
Rull (2003) for a review of the literature, and specifically Table 1 for the errors in six prominent models for the
low end of the wealth distribution.
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6 Conclusion

We study the equilibrium properties of complex asset markets. A complex asset is defined as

an investment which requires a model and implementation strategy, thereby exposing investors

to idiosyncratic risk. We provide a specific micro-foundation for how complex assets impose

idiosyncratic risk on investors through imperfect hedging or tracking portfolios in long-short

strategies designed to maximize returns while minimizing risk. In our equilibrium model, re-

quired returns increase with asset complexity, as proxied for by higher total volatility. We

emphasize heterogeneity in the risk-return tradeoff faced by investors with different levels of

expertise. Accordingly, we show that in our model, if expertise and complexity are comple-

mentary, improvements in market-level Sharpe ratios can be accompanied by lower market

participation, consistent with empirical observations. Finally, we describe the implications of

our model for the industrial organization of markets for complex risky assets. Limited participa-

tion and selection effects imply that more complex assets display less concentrated equilibrium

size distributions, which we show is consistent with data on relative value hedge fund strategies.
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Figure 1: Model comparative statics over variation in the dispersion in expertise (y-axis) and the
curvature of effective volatility in expertise (x-axis). Economies satisfy Case 3 of Proposition
3.4, i.e. expertise and complexity are complementary, using the functional form σ2 (σν , x) =
a + x−bσ2

ν for effective volatility, and a log-normal distribution for x with a mean of zero and
dispersion given on the y-axis. The top left panel displays blue for parameters for which the
sufficient Condition 2 in Proposition 3.5, which requires non-representativeness of the highest
elasticity participants, is satisfied, and red for parameters for which it is violated. The top
right panel uses the same color scheme to show that participation is decreasing whenever this
condition is satisfied. The bottom left panel displays blue for parameters for which the sufficient
Condition 2 in Proposition 3.6, which requires non-representativeness of marginal participants,
is satisfied, and red for parameters for which it is violated. The bottom left panel uses the same
color scheme to show that the equilibrium equally-weighted Sharpe ratio is increasing whenever
this condition is satisfied.
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Figure 2: Model comparative statics over variation in total risk. Blue lines plot partial equi-
librium comparative statics, red lines plot general equilibrium comparative statics. Economies
satisfy Case 3 of Proposition 3.4, i.e. expertise and complexity are complementary.
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Cumulative wealth shares in the data Lorenz Curve: model versus data
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Figure 3: Concentration in complex asset markets, data and model: The top left panel shows
Lorenz curves for Relative Value Fixed Income Strategies in the Hedge Fund Research Database.
Strategies are grouped into complexity rankings by pseudo Sharpe ratios across funds within
strategies, α

E[σi]
. The top right panel compares the wealth distribution of the model at baseline

parameters to the average of all five relative value strategies. The bottom panel plots the
average wealth distribution over all five relative value strategies against the model targeted to
match the average Sharpe ratios in the top left panel. As in the data, wealth concentration
decreases with complexity.
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Table 1: Numerical Example: Baseline Parameter Values

Parameter Symbol Value Target

Discount factor ρ 0.01 Annual interest rate

Risk-free rate rf 0.01 Annual interest rate

Risk aversion γ 5

Entry cost fnx 0.03

Maintenance cost fxx 0.01

Supply of risky asset S 1.20 Average excess return α = 6.98%

Total volatility of risky asset return σν 40%

Mean of expertise distribution µx 0

Volatility of expertise distribution σx 4

Constant in σ2(x) a 0.48% Average SR

Slope of σ2(x) b 1.5 Average Gini

Minimum wealth share zmin 0.01

Table 2: Relative Value Hedge Fund Strategies: Summary Statistics. This table provides
data on the five single strategy relative value fund classifications in the Hedge Fund Research
database. The first column provides time series average returns by fund classification. The
second column provides the pseudo Sharpe ratios across funds withing strategies, α

E[σi]
.

TS AVG Pseudo

Industry Sharpe Gini

Strategy Name Returns Ratio

FI Asset Backed 9.06% 1.15 0.66

FI Sov 7.94% 1 0.62

FI Conv Bond Arb 7.78% 0.87 0.66

Volatility 6.32% 0.52 0.75

FI Corp 3.80% 0.45 0.79
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Table 3: Model vs. Data: Asset Pricing and Wealth Distributions. We classify the five single
strategy relative value fund classifications in the Hedge Fund Research database into three
groups, by pseudo Sharpe ratios across funds within strategies, α

E[σi]
. The medium complexity

strategy grouping averages over all strategies, the high complexity strategy averages over the
highest two pseudo Sharpe ratio strategies, and the lowest strategy averages over the lowest
two strategy groupings. α measures time series average returns by fund classification grouping.

α Pseudo Sharpe ratio Gini Participation

Model Data Model Data Model Data Model

σHν 11.25 8.50 1.07 1.08 0.60 0.64 0.32

σMν 6.98 6.98 0.80 0.80 0.70 0.70 0.41

σLν 3.66 5.06 0.50 0.49 0.78 0.77 0.61
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A Appendix: to be posted online

Proof. Proposition 2.1. We prove this Proposition by guess and verify. First, we write the HJB
equations of our model

max
cx(x,t,s),θ(x,t,s)

0 = u (cx (x, t, s)) + V x
w [w (t, s) (rf + θ (x, t, s)α (t, s))− cx (x, t, s)− fxxw (t, s)]

+
θ2 (x)σ2 (x)w (t, s)2

2
V x
ww − ρV x

max
cn(t,s)

0 = u (cn (t, s)) + V n
w (rfw (t, s)− cn (t, s))− ρV n

The first order conditions for optimality are given by:

u′ (cx (x, t, s)) = V x
w ,

u′ (cn (t, s)) = V n
w ,

V x
wα (t, s) + θ (x, t, s)σ2 (x)w (t, s)V x

ww = 0.

Next, we guess that the value functions have the following form:

V x (w (t, s) , x) = yx (x, t, s)
w (t, s)1−γ

1− γ
,

V n (w (t, s) , x) = yn (t, s)
w (t, s)1−γ

1− γ
.

Given these conjecture, it follows from the Benveniste-Scheinkman condition that the optimal con-
sumption choices are given by:

cx (x, t, s) = [yx (x, t, s)]
− 1
γ w (t, s) ,

cn (t, s) = [yn (t, s)]
− 1
γ w (t, s) ,

and that the optimal portfolio choice is given by

θ (x, t, s) =
α (t, s)

γσ2 (x)
.

Plugging these choices into the HJB equations, we get

0 = [yx (x, t, s)]
− 1−γ

γ + yx (x, t, s)

(
rf +

α2 (t, s)

γσ2 (x)
− [yx (x, t, s)]

− 1
γ − fxx

)
(1− γ)

− α
2 (t, s)

2γσ2 (x)
yx (x, t, s) (1− γ)− ρyx (x, t, s)

= γ [yx (x, t, s)]
− 1−γ

γ + yx (x, t, s)

(
rf +

α2 (t, s)

2γσ2 (x)
− fxx

)
(1− γ)− ρyx (x, t, s) ,

0 = γ [yn (t, s)]
− 1−γ

γ + yn (t, s) (1− γ) rf − ρyn (t, s) .

Rearranging the equations, we solve for yx (x, t, s) and yn (x, t, s) ,

yx (x, t, s) =

[
(γ − 1) (rf − fxx) + ρ

γ
+

(γ − 1)α2 (t, s)

2γ2σ2 (x)

]−γ
,

yn (t, s) =

[
(γ − 1) rf + ρ

γ

]−γ
.

Given all policy functions, we get the experts’ wealth growth rates:

dw (t, s)

w (t, s)
=

(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)

)
dt+

α (t, s)

γσ (x)
dB (t, s)
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Finally, given homogeneity of the value functions in wealth, the participation cutoff is constructed by
direct comparison between yx (x, t, s) and yn (t, s) .

Fund flows related to expertise. For illustrative purposes, we present the optimization prob-
lem and wealth dynamics for a specification in which wealth grows exogenously as an increasing,
concave, and bounded function of expertise, x, to show that our main results are preserved under this
specification. In this case, the experts’ optimization problem is given by:

V x (w (t, s) , x) = max
cx(x,t,s),T,θ(x,t,s)

E
[∫ T

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(T−t)V n (w (t, s) , x)

]
(29)

s.t. dw (t, s) = [w (t, s) (rf + θ (x, t, s)α (t, s) + i (x))− cx (x, t, s)− Fxx] ds (30)

+w (t, s) θ (x, t, s)σ (x) dB (t, s) ,

where i(x) represents the exogenous investment flow into the experts’ wealth. We have that where
yx (x) is given by:

yx (x) =

[
(γ − 1) (rf − fxx) + ρ

γ
+

(γ − 1)

γ
i (x) +

(γ − 1)α2

2γ2σ2 (x)

]−γ
and (31)

yn (x) =

[
(γ − 1) rf + ρ

γ

]−γ
. (32)

Furthermore, the wealth of experts evolves according to the law of motion:

dw (t, s)

w (t, s)
=

(
rf − fxx − ρ

γ
+
i (x)

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)

)
dt+

α (t, s)

γσ (x)
dB (t, s) (33)

Finally, investors choose to be experts if the excess return earned per unit of wealth exceeds the
maintenance cost per unit of wealth:

i (x)

γ
+

α2 (t, s)

2σ2 (x) γ
≥ fxx. (34)

Suppose i (x) is increasing, concave, and bounded above, we can obtain an equivalent σ̃ (x) , where

1

σ̃2 (x)
=

2i (x)

α2
+

1

σ2 (x)
,

and our remaining analysis follows the same lines as in our main specification.

Proof. Proposition 2.2. Equivalence of value and policy functions under the reflecting
barrier zmin.

Interpretation of zmin: We assume that one of two things can happen to an investor at zmin. With
probability q, the investor is given a low value as punishment, and is eliminated from the market and
replaced with a new agent with wealth share zmin and the same expertise as the exiting agent. Note
that punishment and elimination in isolation would cause the incumbent agent to be conservative, to
avoid zmin. With probability 1−q, the agent is rewarded by remaining in the market with wealth share
equal to zmin, which we implement with a reflected geometric Brownian Motion. Note that this reward
in isolation would cause the agent to risk shift, to take advantage of limited liability at zmin. Intuitively,
we require that E[V x(z, x)] = qE[V punishment] + (1 − q)E[V reward], conditional on the optimal policies
under the true wealth share dynamics. Since the value under the true, non-reflecting, dynamics lies
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between the punishment value of dying and the reward value of reflection, we conjecture (and verify
below) that there exists some probability, conditional on parameters, that this is the case. It seems
realistic that investors face uncertainty about what will happen to them if their assets reach a lower
threshold. Will they be liquidated, or rescued? Note that our proof offers a technical contribution for
models with endogenous state variables following a reflecting geometric Brownian motion.

We show that the optimal policies in the model with reflecting barrier zmin are equivalent to
those in the original model under our assumptions for probabilities and values of exit vs. reflection.
Our proof assumes an optimal voluntary exit date. This is without loss of generality in a stationary
equilibrium with no entry or exit.

The model with geometric Brownian motion wealth share dynamics is given by the true Model 1
as follows:

V x (z (t, s) , x) = max
cx(x,t,s),T,θx(x,t,s)

E
[∫ T

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(T−t)V n (z (t, s))

]
s.t. dz (t, s) = [z (t, s) (rf + θx (x, t, s)α (t, s))− cx (x, t, s)− Fxx] ds

+z (t, s) θx (x, t, s)σ (x) dB (t, s) ,

The model with reflected Brownian motion wealth share dynamics is given by the alternative
Model 2 as follows:

V r (z (t, s) , x) = max
cr(x,t,s),T,θr(x,t,s)

E

[∫ s′

t
e−ρ(s−t)u (cr (x, t, s)) ds+ e−ρ(s′−t)

[
(1− q)V r (zmin, x)
+qV n (z (t, s) , x)

]]
s.t. dz (t, s) = [z (t, s) (rf + θr (x, t, s)α (t, s))− cr (x, t, s)− Fxx] ds

+z (t, s) θr (x, t, s)σ (x) dB (t, s) ,

where s′ < T is the first time that the agent’s wealth falls below zmin, the superscript n denotes the
value of a non-expert which cannot re-enter, and the superscript r denotes the value of an expert
under reflected Brownian dynamics, given by dzt/zt = µzdt + σzdBt for zt > zmin and dzt/zt =
max (µzdt+ σzdBt, 0) for zt ≤ zmin.28

For parsimony, we only present the case in which the expert wealth share drops below zmin before
the voluntary exit stopping time at which an expert would voluntarily choose to exit, which applies
in the stationary equilibrium with exit time T = ∞ since there is no voluntary entry or exit in
equilibrium.

To equate value and policy functions under the true and reflected wealth share dynamics then
requires the appropriate specification of q, the probability of forced exit vs. being allowed to remain in
the complex asset market with a wealth share of zmin. Two alternative specifications for q both lead
to equal values and policies. The first specifies that the value upon exit is the value of a non-expert
which cannot re-enter, which is the same for all levels of expertise. In this case, the probability of
exit must depend on expertise. The second alternative specifies that the value of exit is increasing in
expertise. In this case, the probability of exit is the same for all agents. In what follows, we use the

28See Harrison (2013), who also notes that the “reflected geometric Brownian motion process” might more
precisely be called a regulated Brownian motion.
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case in which the value upon exit is the value of a non-expert.29 Define

q (z (t, s) , x) =
yx (x)−

[
zmin
z(t,s)

]1−γ

yn (x)− yx (x)
[
zmin
z(t,s)

]1−γ , for z (t, s) ≤ zmin. (35)

Using this definition and equation (10) from Proposition 2.1, it is straightforward to show that

V x (z (t, s) , x) = (1− q)V x (zmin, x) + qV n (z (t, s)) , for z (t, s) ≤ zmin. (36)

Then, it is sufficient to show that

V r (z (t, s) , x) = V x (z (t, s) , x) , for all x and z (t, s) ≥ zmin.

Our proof strategy is to first show that the value function and optimal policy functions are identical
when expert wealth equals zmin. Next, we show that the two models are identical for z > zmin.

First, in Model 2, cr (x, t, s) is the optimal consumption, therefore,

V r (zmin, x) = E

[∫ s′

t
e−ρ(s−t)u (cr (x, t, s)) ds+ e−ρ(s′−t) [(1− q)V r (zmin, x) + qV n

(
z
(
t, s′
))]]

≥ E

[∫ s′′

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(s′′−t) [(1− q)V r (zmin, x) + qV n

(
z
(
t, s′′

))]]
,

where on the right hand side of the inequality we replace cr with cx and allow the time s′ at which
the wealth share declines to zmin to update to s′′ accordingly. Rearranging terms, we have:

V r (zmin, x) =
1

1− E
[
(1− q) e−ρ(s′−t)

]E[∫ s′

t
e−ρ(s−t)u (cr (x, t, s)) ds+ e−ρ(s′−t)qV n

(
z
(
t, s′
))]

≥ 1

1− E
[
(1− q) e−ρ(s′′−t)

]E[∫ s′′

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(s′′−t)qV n

(
z
(
t, s′′

))]
.

Second, in Model 1, we can rewrite the value of being an expert as the value of the stream of con-
sumption before s′′ plus the continuation value if wealth falls below zmin. We have:

V x (zmin, x) = E

[∫ s′′

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(s′′−t)V x

(
z
(
t, s′′

)
, x
)]

= E

[∫ s′′

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(s′′−t) [(1− q)V x (zmin, x) + qV n

(
z
(
t, s′′

))]]

≥ E

[∫ s′

t
e−ρ(s−t)u (cr (x, t, s)) ds+ e−ρ(s′−t) [(1− q)V x (zmin, x) + qV n

(
z
(
t, s′
))]]

,

where the second equality uses the result in Equation (36), and the inequality results from replacing
cx with cr and allowing the expected time s′′ at which the wealth share declines to zmin under the

29 The alternative is to specify q to be independent of the level of expertise, and given by q (z (t, s) , x) =
1−[ zmin

z(t,s) ]
1−γ

yr−[ zmin
z(t,s) ]

1−γ . In this case, the value of exit must be specified to be proportional to the expertise-specific value,

i.e. V rexit (z (t, s) , x) = yrV x (z (t, s) , x) , where yr > 1.
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policy cr to update to s′ accordingly. Rearranging terms, we have

V x (zmin, x) =
1

1− E
[
(1− q) e−ρ(s′′−t)

]E[∫ s′′

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(s′′−t)qV n (z (t, s))

]

≥ 1

1− E
[
(1− q) e−ρ(s′−t)

]E[∫ s′

t
e−ρ(s−t)u (cr (x, t, s)) ds+ e−ρ(s′−t)qV n (z (t, s))

]
.

We have established two inequalities which hold in opposite directions. Thus, we must have equality,
namely:

1

1− E
[
(1− q) e−ρ(s′′−t)

]E[∫ s′′

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(s′′−t)qV n (z (t, s))

]

=
1

1− E
[
(1− q) e−ρ(s′−t)

]E[∫ s′

t
e−ρ(s−t)u (cr (x, t, s)) ds+ e−ρ(s′−t)qV n (z (t, s))

]
,

and

V r (zmin, x) = V x (zmin, x) .

Next, we show that the value functions for Model 1 and Model 2 are identical when z > zmin. Using
analogous logic, we have:

V r (z (t, s) , x) = E

[∫ s′

t
e−ρ(s−t)u (cr (x, t, s)) ds+ e−ρ(s′−t) [(1− q)V r (zmin, x) + qV n

(
z
(
t, s′
))]]

≥ E

[∫ s′′

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(s′′−t) [(1− q)V x (zmin, x) + qV n

(
z
(
t, s′′

))]]

= E

[∫ s′′

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(s′′−t)V x

(
z
(
t, s′′

)
, x
)]

= V x (z (t, s) , x) , for all z (t, s)

with equality iff cx (x, t, s) = cr (x, t, s) and θx (x, t, s) = θr (x, t, s) . Also, we have:

V x (z (t, s) , x) =

[∫ s′′

t
e−ρ(s−t)u (cx (x, t, s)) ds+ e−ρ(s′′−t) [(1− q)V x (zmin, x) + qV n

(
z
(
t, s′′

))]]

≥ E

[∫ s′

t
e−ρ(s−t)u (cr (x, t, s)) ds+ e−ρ(s′−t) [(1− q)V r (zmin, x) + qV n

(
z
(
t, s′
))]]

= V r (z (t, s) , x) , for all z (t, s)

with equality iff cx (x, t, s) = cr (x, t, s) and θx (x, t, s) = θr (x, t, s) . Therefore, our definition of the
probabilities for exit vs. remaining in equation (35) yields equivalence for all value and policy functions
under the true and reflected dynamics models:

V x (z (t, s) , x) = V r (z (t, s) , x) , for all x and z (t, s)

cx (x, t, s) = cr (x, t, s) , for all x and z (t, s)

θx (x, t, s) = θr (x, t, s) , for all x and z (t, s) .

Proof. Proposition 2.3 We prove this Proposition by guess-and-verify. We guess that the stationary
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distribution takes the following form:

φ(z, x) = C(x)z−β(x)−1,

Then, by plugging this guess into the Kolmogorov forward equation, we obtain the following condition:

0 =− ∂z
(
z−β(x)

(
rf − fxx − ρ

γ
+

(γ + 1)α2

2γ2σ2 (x)
− g (x̄)

))
+

1

2
∂zz

(
z1−β(x) α2

γ2σ2 (x)

)
= β(x)

(
rf − fxx − ρ

γ
+

(γ + 1)α2

2γ2σ2 (x)
− g (x̄)

)
− 1

2
β(x) (1− β(x))

[
α

γσ (x)

]2

= β(x)

[
rf − fxx − ρ

γ
+
α2 (γ + β(x))

2γ2σ2 (x)
− g (x̄)

]
Thus, by collecting terms, we obtain:

β(x) = C1
σ2 (x)

α2
− γ ≥ 1,

C1 = 2γ (fxx + ρ− rf + γg (x̄)) ,

C(x) =
1∫

z−β−1dz
=
C1

σ2(x)
α2 − γ

z
−C1

σ2(x)

α2 +γ

min

.

Note there are two roots of equation

0 = β(x)

[
rf − fxx − ρ

γ
+
α2 (γ + β(x))

2γ2σ2 (x)
− g (x̄)

]
.

The negative drift of wealth shares ensures that there will be one root of this equation which is larger
than one. We then take this root in order to ensure that the mean wealth has a finite mean.

Proof. Corollary 2.1. For the highest expertise agents, we have

z̄ =

∫ ∞
zmin

zφ(z, x̄)dz =

∫ ∞
zmin

C (x̄) z−β(x̄)dz

=
1

−β (x̄)− 1
C (x̄) z−β(x̄)−1|∞zmin

= zmin

[
1 +

1

β (x̄)− 1

]
.

This gives us another expression for β (x̄) ,

β (x̄) =
1

1− zmin/z̄
.

Also, we know that the decay coefficient is given by:

β (x̄) = 2γ (fxx + ρ− rf + γg (x̄))
σ2 (x̄)

α2
− γ

Therefore, by combining these expressions, we have

2γ (fxx + ρ− rf + γg (x̄))
σ2 (x̄)

α2
− γ =

1

1− zmin/z̄
,
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By rearranging the above equation, we get the following expression:

g (x̄) =
rf − fxx − ρ

γ
+

α2

2γσ2 (x̄)
+

α2

2γ2σ2 (x̄)

1

1− zmin/z̄
.

We plug g (x̄) into β (x) , to obtain:

β (x) =

(
γ +

zmin/z̄

1− zmin/z̄

)
σ2 (x)

σ2 (x̄)
− γ.

Relation between decay parameter β and portfolio choice determinants. It is intuitive
that investing more in the risky asset leads to a fatter tailed wealth distribution. However, perhaps
surprisingly, as Lemma A.1 illustrates, not every parameter which increases the difference in the
fraction of wealth allocated to the risky asset leads to an increase in the degree of fat tails of the
expertise-specific wealth distributions. We show in Lemma A.1 that, while differences in portfolio
choice driven by differences in effective volatilities lead to greater differences in decay parameters, this
is not true for variation in portfolio choice driven by higher excess returns or lower risk aversion. This
result offers a unique prediction for our model of complexity as differences in risk vs. risk aversion.

Lemma A.1 Relation Between θ (x) and β (x)
Consider two level of expertise, xH > xL. We have that:

θ (xH)− θ (xL) =
α

γ

σ2 (xL)− σ2 (xH)

σ2 (xH)σ2 (xL)
,

and

β (xH)− β (xL) = 2γ2 (fxx + r − rf + γg (x̄))
σ2 (xH)σ2 (xL)

α3
[θ (xL)− θ (xH)] .

If a larger difference in portfolio choice is due to either a higher excess return or a lower risk aversion
for some agents, the resulting dispersion in β is smaller. If it is due to an increase in the difference
in effective volatilities, then the difference in β’s is larger.

Proof. Lemma A.1 Recall that the risky asset share and the decay coefficients are given by:

θ (x) =
α

γσ2 (x)
,

β (x) = 2γ (fxx + r − rf + γg (x̄))
σ2 (x)

α2
− γ.

Consider two levels of expertise, xH > xL we have the following expression for the difference in the
risky asset share:

θ (xH)− θ (xL) =
α

γ

[
1

σ2 (xH)
− 1

σ2 (xL)

]
=

α

γ

σ2 (xL)− σ2 (xH)

σ2 (xH)σ2 (xL)
,

and the following expression for the difference in decay coefficient:

β (xH)− β (xL) = 2γ (fxx + r − rf + γg (x̄))
1

α2

[
σ2 (xH)− σ2 (xL)

]
= 2γ2 (fxx + r − rf + γg (x̄))

σ2 (xH)σ2 (xL)

α3
[θ (xL)− θ (xH)] .
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If a larger dispersion of portfolio choice is due to either a higher excess return or a lower risk
aversion, the dispersion in β is smaller, since:

∂ [β (xH)− β (xL)]

∂α
< 0, and

∂ [θ (xL)− θ (xH)]

∂α
> 0

∂ [β (xH)− β (xL)]

∂γ
> 0, and

∂ [θ (xL)− θ (xH)]

∂γ
< 0

Consider the case where σ2 (xH)σ2 (xL) is a constant, then

∂ [β (xH)− β (xL)]

∂ [θ (xL)− θ (xH)]
= 2γ2 (fxx + r − rf + γg (x̄))

σ2 (xH)σ2 (xL)

α3
> 0.

A larger dispersion in portfolio choice, resulting from a larger difference between effective volatility,
implies a larger dispersion of tail distribution. The condition on the product of the effective variances
is not necessary, however, as can be seen by simple algebra.

Lemma A.2 The micro-foundation for the return process in Equation(1) provided in Lemma 2.1,
along with Assumption 1, are sufficient to ensure that neither policy functions nor equilibrium prices
are functions of the realization of the fundamental shock dBF (t, s).

Proof. Lemma A.2 First, since the innovations in dBF (t, s) are independent over time, the realiza-
tions do not affect portfolio choices or consumption decisions. Moreover, Lemma 2.1 describes how
fundamental shocks are absorbed into the investor-specific risk σ(x)dBi(t, s) in Equation 1, which im-
plies that the proof for our Proposition 2.1 applies as stated. Then, for asset prices to be independent
of the realization of the fundamental shock dBF (t, s), all that remains is to show that the expected
growth rate of wealth, conditional on each expertise level, is the same under the return process stated
in (1) and the return process constructed in Lemma 2.1.

We can rewrite the expected growth rate of wealth as

dw (t, s)

w (t, s)
=

(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)

)
dt+

α (t, s)

γσ (x)
dB (t, s)

=

(
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)

)
dt+

α (t, s)

γσ (x)

[
(1− ρi(x))σFdBF (t, s) + σT (x)dBT (t, s)

]
.

Second, because ρo(x)+ρu(x)
2 = 1, we have that

σo(x) = σu(x) =

√
[(1− ρo(x))σF ]2 + [σT (x)]2 =

√
[(1− ρu(x))σF ]2 + [σT (x)]2.

Thus, each expert’s expected growth rate of wealth, conditional on the aggregate shock is given by:

E

[
dw (t, s)

w (t, s)
|x, dBF (t, s)

]
=
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)
+
α (t, s)

γσ (x)
(1− ρi(x))σFdBF (t, s).

If there is a positive aggregate shock, the growth rate of the wealth of under-hedging investors, with
lower ρ, is higher than the growth rate of wealth for over-hedging investors, with higher ρ, and vice
versa. The difference is exactly canceled out at the expertise-level aggregate. That is:

E

[
dw (t, s)

w (t, s)
|x
]

=
rf − fxx − ρ

γ
+

(γ + 1)α2 (t, s)

2γ2σ2 (x)
.

Aggregating across expertise levels, then, the equilibrium excess return α does not depend on the
realization of aggregate shock.
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Proof. Lemma 3.1 Direct calculation. We use 1 to denote a positive sign. For ease of exposition,
we study the partial derivative of the log of expertise level investment in the risky asset. The sign of
the partial derivative of the log and the level will be the same because log is a positive transformation.
We have:

log I (x) = log
α

γσ2 (x)
+ logZ (x)

= logα− log γ − log σ2 (x) + logZ (x) ,

where Z (x) is the total expertise level wealth share,

Z(x) =

∫ ∞
zmin

zφ(z, x)dz =

∫ ∞
zmin

C (x) z−β(x)dz

=
1

−β (x)− 1
C (x) z−β(x)−1|∞zmin

= zmin

[
1 +

1

β (x)− 1

]
.

Then:

1.

sign

(
∂I (x)

∂σ2 (x)

)
= sign

(
∂ log I (x)

∂σ2 (x)

)
= sign

(
−1− 1

Z (x)

zmin

(β (x)− 1)2C1
1

α2

)
= −1

2.

sign

(
∂I (x)

∂σν

)
= sign

(
∂I (x)

∂σ2 (x)

∂σ2 (x)

∂σν

)
= sign

(
∂I (x)

∂σ2 (x)

)
sign

(
∂σ2 (x)

∂σν

)
= −1.

3.

sign

(
∂I (x)

∂α

)
= sign

(
∂ log I (x)

∂α

)
= sign

(
1 +

2

Z (x)

zmin

(β (x)− 1)2C1
σ2 (x)

α3

)
= 1

4.

sign

(
∂I (x)

∂γ

)
= sign

(
∂ log I (x)

∂γ

)
= sign

(
−1− 1

Z (x)

zmin

(β (x)− 1)2

(
σ2 (x)

α2

(
C1

γ
+ 2γg (x)

)
− 1

))
≤ sign

(
−1− 1

Z (x)

zmin

(β (x)− 1)2

(
σ2 (x)

α2

C1

γ
− 1

))
= −1
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5.

sign

(
∂I (x)

∂fxx

)
= sign

(
∂ log I (x)

∂fxx

)
= sign

(
− 1

Z (x)

zmin

(β (x)− 1)2

σ2 (x)

α2
2γ

)
= −1

Proof. Proposition 3.1 For each level of expertise, we have

sign

(
∂I (x)

α

)
= 1, for x ≥ x.

And when α is higher, more experts enter. Thus

∂I

∂α
> 0.

Proof. Proposition 3.2 We use direct calculations. We use 1 to denote a positive sign.

1.

sign

(
∂I (x)

∂σν

)
= sign

(
∂I (x)

∂σ2 (x)

∂σ2 (x)

∂σν

)
= sign

(
∂I (x)

∂σ2 (x)

)
sign

(
∂σ2 (x)

∂σν

)
.

We also have

sign

(
∂I (x)

∂σ2 (x)

)
= −1

Thus for each level of expertise, when total risk is higher, the demand for the complex risky
asset is smaller. And, from Equation (34), since σ(x) is increasing in σν , when σν is higher,
participation is lower.

∂I

∂σν
< 0.

2. For each level of expertise:

sign

(
∂I (x)

∂γ

)
= −1,

and from Equation (34), participation is lower. Thus,

∂I

∂γ
< 0.
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3. For each level of expertise:

sign

(
∂I (x)

∂fxx

)
= −1,

and again from Equation (34), participation is lower. Thus, we also have that

∂I

∂fxx
< 0.

Proof. Proposition 3.3 We have

sign

(
∂I (x)

∂x

)
= sign

(
∂I (x)

∂σ (x)

∂σ (x)

∂x

)
= 1

And, using integration by parts, we obtain:

I (Λ1)− I (Λ2) =

∫
[λ1 (x)− λ2 (x)] I (x) dx

= −I (x) [Λ1 (x)− Λ2 (x)]−
∫
∂I(x)

∂x
[Λ1 (x)− Λ2 (x)] dx

> 0

Proof. Proposition 3.4. Writing out the partial derivative, and using the fact that, for example,
∂ logα
∂ log σν

= ∂α/α
∂σν/σν

, we have that:

∂SR (x)

∂σν
=

∂α
∂σν

σ (x)− α∂σ(x)
∂σν

σ2 (x)

=
α

σ(x)σν

[
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

]
.

Thus,

∂SR (x)

∂σν
> 0 iff

∂α/α

∂σν/σν
>
∂σ (x) /σ (x)

∂σν/σν
This result illustrates the key role of the elasticity of excess returns vs. the elasticity of effective
volatilities with respect to changes in total volatility.

If
∂
∂σ(x)/σ(x)
∂σν/σν

∂x is a constant, we must have either ∂α/α
∂σν/σν

> ∂σ(x)/σ(x)
∂σν/σν

for all x or ∂α/α
∂σν/σν

< ∂σ(x)/σ(x)
∂σν/σν

for all x.

If
∂
∂σ(x)/σ(x)
∂σν/σν

∂x < 0, and assume there is a cutoff x∗ such that

∂α/α

∂σν/σν
=
∂σ (x∗) /σ (x∗)

∂σν/σν
,

then for all x < x∗, we have ∂SR(x)
∂σν

< 0; and for all x > x∗, we have ∂SR(x)
∂σν

> 0.

If
∂
∂σ(x)/σ(x)
∂σν/σν

∂x > 0, and assume there is a cutoff x∗ such that

∂α/α

∂σν/σν
=
∂σ (x∗) /σ (x∗)

∂σν/σν
,

then for all x < x∗, we have ∂SR(x)
∂σν

> 0; and for all x > x∗, we have ∂SR(x)
∂σν

< 0.
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Value Weighted Equilibrium Sharpe Ratio The market value weighted Sharpe ratio can be
written as

SRvw = E

[
θZ (x)

I

α

σ (x)
|x ≥ x

]
=

α

γI
E

[
Z (x)

σ3 (x)
|x ≥ x

]
.

Participation: Intermediate results and proofs We begin by describing results for bounds
on the elasticity of α with respect to changes in total volatility, σν . As we saw in Proposition 3.4
which describes changes in individual Sharpe ratios as total volatility changes, the relative elasticity
of excess returns, ∂α/α

∂σν/σν
, vs. the elasticity of effective volatilities ∂σ(x)/σ(x)

∂σν/σν
as total volatility changes,[

∂ logα

∂ log σν
− ∂ log σ(x)

∂ log σν

]
≡
[
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

]
plays an important role in our model economy. Both portfolio and participation policies depend on
excess returns relative to effective risk. Sharpe ratios at both the individual and market level measure
the amount of compensation per unit of risk. Thus, how each of these policies and equilibrium
outcomes change as total volatilities change is driven in large part by the relative elasticity of excess
returns vs. the elasticity of effective volatilities. If α is highly elastic with respect to changes in total
volatility, then many agents will choose to participate even when total volatility is high. On the other
hand, if low expertise agents’ effective volatilities are very elastic with respect to total volatility, and
in particular are more elastic than α is, then they will drop out of the complex asset market when
total volatility increases.

Although we cannot solve for α in closed form, we describe bounds on its elasticity with respect
to changes in total volatility. These bounds depend on the shape of the elasticity of effective volatility
with respect to total volatility. Intuitively, cases in which participation increases are cases in which
the difference in the increase in effective volatility for low and high expertise agents is similar. This
is due to the requirement of market clearing. As volatility increases, demand decreases. If all agents’
volatilities increase by a similar amount, then for demand to meet supply α must increase enough to
satisfy even lower expertise agents. On the other hand, if the change in effective volatility is much
smaller for high expertise agents (Case 3 of Proposition 3.4), then it may be that these agents demand
a lot of the risky asset despite the higher volatility. If high expertise agents’ demand is high enough,
the market can clear at a level of α that does not adequately compensate lower expertise agents.

First, we establish intuition by showing that the percentage change in α has to be large enough
to at least satisfy the investors whose risk-return tradeoff deteriorates the least as total volatility
increases.

Lemma A.3 In the equilibrium, we have

∂α/α

∂σν/σν
> lσνinf ,

where lσνinf is the lowest elasticity of all participating investors’ effective volatility with respect to total
volatility

lσνinf ≡ inf

{
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

}
.
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Proof. Lemma A.3 Proof by contradiction. Suppose σν is increased by 1%, but the equilibrium α
is increased by less than lσνinf%, that is

∂α/α

∂σν/σν
≤ lσνinf

The condition implies that ∂α/α
∂σν/σν

− ∂σ(x)/σ(x)
∂σν/σν

< 0 ∀x ≥ x. We have:

1. Less participation: because α2

2σ2(x)γ
= fxx and ∂α/α

∂σν/σν
< ∂σ(x)/σ(x)

∂σν/σν
, x increases.

2. Less investment in the complex risky asset:

∂ log I (x)

∂σν

=
∂α/α

∂σν
− 2

∂σ (x) /σ (x)

∂σν
+

1

Z (x)

∂Z (x)

∂σν

=
∂α/α

∂σν
− 2

∂σ (x) /σ (x)

∂σν
− 1

Z (x)

zmin

(β (x)− 1)2

∂β (x)

∂σν

=
∂α/α

∂σν
− 2

∂σ (x) /σ (x)

∂σν
− 1

Z (x)

zmin

(β (x)− 1)2 2 (β (x) + γ)

[
∂α/α

∂σν
− ∂σ (x) /σ (x)

∂σν

]
= −∂σ (x) /σ (x)

∂σν
+

1

σν

[
1 +

zmin

Z (x)

2 (β (x) + γ)

(β (x)− 1)2

] [
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

]
=

1

σν

{
−∂σ (x) /σ (x)

∂σν/σν
+

[
1 +

1

β (x)

2 (β (x) + γ)

β (x)− 1

] [
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

]}
< 0 , for all x ≥ x,

where for ∂β(x)
∂σν

, we use Equation (22). We also use the fact that Z(x) = zmin

(
β(x)
β(x)−1

)
. The

fact that we have β(x) ≥ 1 is shown in the proof to Proposition 2.3.

Define

B(x) =
1

β (x)

2 (β (x) + γ)

β (x)− 1
,

which describes the elasticity of the mean wealth at expertise level x with respect to total volatility.
We can rewrite the partial derivative of expert’s investment with respect to total volatility as

∂ log I (x)

∂σν
=

1

σν

{
−∂σ (x) /σ (x)

∂σν/σν
+ [1 + B(x)]

[
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

]}
(37)

Therefore, in the new equilibrium, the total demand for the risky asset is less than the total supply.
Contradiction. It must be that

∂α/α

∂σν/σν
> lσνinf .

The last term in the partial derivative for expertise level investment, Equation (37), clearly illustrates
the important role of the relative elasticity of excess returns vs. the elasticity of effective volatilities.
It shows why our bound for the elasticity of α is that its change will be larger than the change in the
effective volatility of the agents with the lowest elasticity of effective volatility with respect to total
volatility (displayed by the highest expertise agents).

The following lemma describes more detailed bounds on the percentage change in α for a given
percentage change in total volatility for the case of decreasing elasticities of effective volatility with
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respect to total volatility (Case 3 of Proposition 3.4). Case 3 of Proposition 3.4 is the only case
which yields a decline in participation as total volatility increases. The condition for decreasing
participation will be closely related related to the bounds in Lemma A.4. In particular, we show
below that participation increases if Condition 1 of Lemma A.4 holds, but decreases if Condition 2
holds. Intuitively, participation will increase if the change in α is large enough to satisfy lower expertise
investors in Case 3, but will decrease otherwise. Lemma A.4 provides bounds on the percentage change
in α for a given percentage change in total volatility for Case 3, depending on the elasticity of the lowest
expertise agent who participates relative to the elasticity of α, and, depending a condition on the ratio
of the partial equilibrium change in demand with respect to total volatility to the partial equilibrium
change in demand with respect to α. Intuitively, if, in partial equilibrium, demand is more sensitive
to changes in effective volatility than to changes in α, then in general equilibrium participation will
decline. We provide a sufficient condition for participation to decline as total volatility increases in
Proposition 3.5 in the main text.

Lemma A.4 In general equilibrium, in Case 3 of Proposition 3.4, in which
∂
∂σ(x)/σ(x)
∂σν/σν

∂x ≤ 0, we have
that:

1.

∂α/α

∂σν/σν
> lσνsup if lσνsup <

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I(x) (1 + B(x))] dΛ (x)
,

and

2.

∂α/α

∂σν/σν
< lσνsup if lσνsup >

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I(x) (1 + B(x))] dΛ (x)
,

where

B (x) =
2

β (x)

(β (x) + γ)

β (x)− 1
.

Proof. Lemma A.4 In Case 3 of Proposition 3.4, we have
∂
∂σ(x)/σ(x)
∂σν/σν

∂x < 0.
Using Equation (37) for the change in expertise-level investment with total volatility and account-

ing for the change in participation we then have for aggregate investment it must be that:

0 =
∂I

∂σν
=

∫ x

x

∂I (x)

∂σν
dΛ (x)− I (x)λ (x)

∂x

∂σν

=

∫ x

x

{
I (x)

σν
(1 + B(x))

(
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

)}
dΛ (x)

−
∫ x

x

I (x)

σν

∂σ (x) /σ (x)

∂σν/σν
dΛ (x)− I (x)λ (x)

∂x

∂σν
. (38)

Rearranging terms, we have an expression for the change in the participation threshold, weighted by
the mass of agents at the threshold, that must be satisfied in order for the risky asset market to clear:

λ (x)
∂x

∂σν
=

1

I (x)

∫ x

x

{
I (x)

σν
[1 + B(x)]

(
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

)}
dΛ (x)

− 1

I (x)

∫ x

x

I (x)

σν

∂σ (x) /σ (x)

∂σν/σν
dΛ (x) .
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Collecting terms with the elasticities with respect to α and effective volatility σ(x), we can write this
as:

λ (x)
∂x

∂σν
=

1

I (x)

∫ x

x

I (x)

σν
[1 + B(x)]

(
∂α/α

∂σν/σν

)
dΛ (x)

− 1

I (x)

∫ x

x

I (x)

σν
[2 + B(x)]

∂σ (x) /σ (x)

∂σν/σν
dΛ (x) . (39)

Therefore, from Equation (39) we have:

∂x

∂σν
> 0⇔

lσνsup =
∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

>
∂α/α

∂σν/σν
>

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I(x) (1 + B(x))] dΛ (x)
. (40)

The first inequality comes from the participation condition. We know that ∂α/α
∂σν/σν

< lσνsup when partici-

pation decreases and x increases. The second inequality is from solving Equation (39) for the elasticity
of α with respect to total volatility in the case that the left hand side of that equation is less than
zero. Using similar arguments, we also have:

∂x

∂σν
< 0⇔

lσνsup =
∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

<
∂α/α

∂σν/σν
<

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I(x) (1 + B(x))] dΛ (x)
. (41)

To gain intuition for the conditions in Equations (40) and (41), note that the right hand side is the ratio
of the partial equilibrium change in demand with respect to total volatility (holding α and x constant),
and the partial equilibrium change in demand with respect to α. Consider first the numerator of this
ratio. The numerator shows that when σν increases, investors allocate a lower fraction of wealth to
the risky asset. We have that θ = α

γσ2(x)
. Thus, if all elasticities of effective volatility with respect

to total volatility were one, then if σν increased by 1%, investors would allocate 2% less to the risky
asset. This leads to the 2 in the numerator. The second term, involving β(x) arises because when σν
increases, β(x) increases, so there is lower total wealth in partial equilibrium. The term

B(x) =
1

β (x)

2 (β (x) + γ)

β (x)− 1

gives the elasticity of the mean wealth at expertise level x with respect to total volatility. The
denominator similarly shows how changes in α affects aggregate demand in partial equilibrium, holding
x and effective volatilities constant. If α increases by 1%, portfolio allocations to the risky asset increase
by 1%, and we have the 1 term. Then, we again see the effect of the change in α on mean wealth
levels. Now, consider why this ratio matters for the elasticity of α. In Equation (40), participation
declines because the effect of the change in aggregate demand from increasing effective volatilities is
greater than the effect on demand from increasing α. The reverse is true in Equation (41).

We can bound the elasticity of α with respect to total volatility more tightly in Case 3 as follows:

Lemma A.5 When
∂
∂σ(x)/σ(x)
∂σν/σν

∂x ≤ 0, in the equilibrium, we have,
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1.
∂α/α

∂σν/σν
> lσνsup if lσνsup <

(
1 +

1

1 + B(x)

)
lσvinf .

and

2.
∂α/α

∂σν/σν
< lσνsup if lσνsup >

(
1 +

1

1 + B(x)

)
E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]
,

where

B(x) =
1

β (x)

2 (β (x) + γ)

β (x)− 1
.

We show that the percentage change in α for a given percentage change in total volatility will be
greater than the highest elasticity of effective volatility with respect to total volatility (displayed by
the participating investor with the lowest expertise) if that highest elasticity is less than a constant
times the lowest elasticity, displayed by agents with the highest level of expertise. In other words,
if the highest elasticity, displayed by the marginal investor, is close enough to the elasticity of the
highest expertise agents, it must be that the change in α is enough to compensate that investor. If
not, the change in α will not be great enough to satisfy market clearing.

We also show the converse: The percentage change in α for a given percentage change in total
volatility will be less than the highest elasticity of effective volatility with respect to total volatility
(displayed by the participating investor with the lowest expertise) if that highest elasticity is greater
than a constant near one times the average elasticity over participating investors. In other words, if
the marginal investor is different enough from the average, the market can clear despite the fact that
their individual Sharpe ratio declines, since the other investors face smaller declines, or increasing
individual Sharpe ratios.

Note that the constant will be near one if β is close to one, which it will be as it is the tail
parameter from a Pareto distribution. As β(x) − 1 goes to zero, the denominator of the constant,
B(x), goes to infinity, so that the entire constant becomes (1+0). Note also that we derive a sufficient
condition which is based on the wealth distribution of the highest expertise agents, as using the entire
distribution, a mixture of Pareto distributions, is more complicated but would yield similar intuition.

Proof. Lemma A.5 We first derive a lower bound on the ratio of the partial equilibrium change in
demand with respect to total volatility (holding α and x constant), and the partial equilibrium change
in demand with respect to α. This lower bound is the condition bounding lσνsup in the first statement
of Lemma A.5. ∫ x

x I(x) (2 + B(x)) ∂σ(x)/σ(x)
∂σν/σν

dΛ (x)∫ x
x [I(x) (1 + B(x))] dΛ (x)

≥

∫ x
x I(x) (2 + B(x)) dΛ (x)∫ x
x [I(x) (1 + B(x))] dΛ (x)

lσvinf

=

(
1 +

∫ x
x I(x)dΛ (x)∫ x

x [I(x) (1 + B(x))] dΛ (x)

)
lσvinf

≥

(
1 +

∫ x
x I(x)dΛ (x)

(1 + B(x))
∫ x
x I(x)dΛ (x)

)
lσvinf

=

(
1 +

1

1 + B (x)

)
lσvinf .
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The first inequality follows because lσvinf is the lowest elasticity, and it replaces the weighted average
elasticity. The next equality groups terms, and the following inequality follows because B(x) is replaced
by B(x̄) and we have that β is decreasing in x. The last equality again groups terms. So, if

lσνsup <

(
1 +

1

1 + B(x)

)
lσvinf ,

we have

lσνsup <

(
1 +

1

B (x)

)
lσvinf ≤

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I (x) (1 + B(x))] dΛ (x)
,

and this ratio was the bound on the elasticity of α from Lemma A.4. Thus, we have established our
tighter bound on the elasticity of α in the first case of Lemma A.5 since we have from Condition 1 in
Lemma A.4,

lσνsup =
∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

<
∂α/α

∂σν/σν
.

Now, we bound the ratio of the partial equilibrium change in demand with respect to total volatility
(holding α and x constant), and the partial equilibrium change in demand with respect to α from
above. This upper bound is the condition bounding lσνsup in the second statement of Lemma A.5.
Consider: ∫ x

x
I (x) (2 + B(x))

∂σ (x) /σ (x)

∂σν/σν
dΛ (x)

≤
∫ x

x
I (x) (2 + B(x)) dΛ (x)

∫ x
x
∂σ(x)/σ(x)
∂σν/σν

dΛ (x)

1− Λ (x)

=

∫ x

x
I (x) (2 + B(x)) dΛ (x)E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]
.

The first inequality follows because the integral
∫ x
x I(x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x) puts more weight

on the average elasticity of wealth times investment relative to total volatility when ∂σ(x)/σ(x)
∂σν/σν

is small

and less weight when ∂σ(x)/σ(x)
∂σν/σν

is large, whereas the term after the inequality sign uses an equal
weighted average of all effective volatilities. The last equality groups terms. We have now bounded
above the numerator in the ratio of the partial equilibrium change in demand with respect to total
volatility (holding α and x constant), and the partial equilibrium change in demand with respect to
α. If we divide through by the partial equilibrium change in demand with respect to α, we have, using
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similar logic as before: ∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I (x) (1 + B(x))] dΛ (x)

≤

∫ x
x I (x) (2 + B(x)) dΛ (x)∫ x
x [I (x) (1 + B(x))] dΛ (x)

E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]

=

(
1 +

∫ x
x I (x) dΛ (x)∫ x

x [I (x) (1 + B(x))] dΛ (x)

)
E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]

≤

(
1 +

∫ x
x I (x) dΛ (x)

(1 + B (x))
∫ x
x I (x) dΛ (x)

)
E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]
=

(
1 +

1

1 + B (x)

)
E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]
.

So, if

lσνsup >

(
1 +

1

1 + B (x)

)
E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]
,

we have

lσνsup >

(
1 +

1

1 + B (x)

)
E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]
≥

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I (x) (1 + B(x))] dΛ (x)
.

Then, from Condition 2 in Lemma A.4 we can get

lσνsup =
∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

>
∂α/α

∂σν/σν
.

We now show conditions under which participation increases, i.e. under which the cutoff level
of expertise for participation x declines, as total volatility increases. In particular, we show that
participation increases with total volatility in Cases 1 and 2 of Proposition 3.4, but only under a tight
restriction in Case 3. In Case 3, participation only increases if the elasticity of the effective volatility
of the lowest expertise investor is not too different from that of the average participating investor.
In other words, participation increases if there is very little difference across expertise levels in the
effect of changes in total volatility on effective volatility, so that elasticities are nearly constant, as in
Case 1, in which participation always increases as total volatility increases. Notice that the condition
restricting the differences in elasticities across investors is the same as Condition 1 in Lemma A.5,
which bounds the change in α from below. Thus, participation will increase only if the change in α is
large enough, which will be the case if all participating investors face similar changes to their effective
volatility as total volatility changes. We discuss the more empirically relevant case for Case 3 of
Proposition 3.4, in which participation declines as total volatility and asset complexity increase, in the
text. Recall that the condition for declining participation requires that elasticities vary enough across
high expertise and low expertise agents, so that market clearing does not require the participation of
lower expertise agents.

Proposition A.1 Define the entry cutoff x,

x = σ−1

(
α√

2γfxx

)
,
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where σ−1 (·) is the inverse function of σ (x) . We have that participation increases with total volatility,

∂x

∂σν
< 0

if the following conditions hold

1.
∂
∂σ(x)/σ(x)
∂σν/σν

∂x ≥ 0, (Proposition 3.4 Cases 1 and 2) or

2.
∂
∂σ(x)/σ(x)
∂σν/σν

∂x < 0, (Proposition 3.4 Case 3) and lσνsup <
(

1 + 1
1+B(x)

)
lσνinf .

Proposition A.1 shows that participation increases in Cases 1 and 2 as total volatility increases. The
reason is that demand for the complex asset by incumbent experts declines, and new wealth must be
brought into the market to clear the fixed supply. However, in Case 3, a tight restriction is required for
participation to increase. The restriction is that there is a very small difference between the highest and
lowest elasticities. The restriction is tight since β is the tail parameter of a pareto distribution, so that
β ≈ 1∀x. Then, given the definition of B(x), this implies that B(x̄)→∞. Intuitively, if the increase
in total volatility adversely impacts low expertise agents much more than high expertise agents, then
high expertise agents can clear the market without the demand from low expertise investors with
substantially deteriorated individual Sharpe ratios.

Proof. Proposition A.1 First,

∂x

∂σν
< 0 iff

∂ log α2

σ2(x)

∂ log σν

∣∣∣
x=x

> 0.

We have

∂ log α2

σ2(x)

∂ log σν

∣∣∣
x=x

= 2

(
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

)
.

Therefore

∂ log α2

σ2(x)

∂ log σν

∣∣∣
x=x

> 0 iff
∂α/α

∂σν/σν
>
∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

.

If
∂
∂σ(x)/σ(x)
∂σν/σν

∂x ≥ 0, from Proposition A.3 we have

∂α/α

∂σν/σν
> lσνinf =

∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

.

If
∂
∂σ(x)/σ(x)
∂σν/σν

∂x < 0 and lσνsup <
(

1 + 1
1+B(x)

)
lσνinf , from Lemma A.4, we know

∂α/α

∂σν/σν
> lσνsup =

∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

.

Participation: Participation declining with total volatility. Proof. Proposition 3.5
First,

∂x

∂σν
> 0 iff

∂ log α2

σ2(x)

∂ log σν

∣∣∣
x=x

< 0.
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We have

∂ log α2

σ2(x)

∂ log σν

∣∣∣
x=x

= 2

(
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

)
.

Therefore

∂ log α2

σ2(x)

∂ log σν

∣∣∣
x=x

< 0 iff
∂α/α

∂σν/σν
< lσνsup =

∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

.

If
∂
∂σ(x)/σ(x)
∂σν/σν

∂x < 0 and lσνsup >
(

1 + 1
1+B(x)

)
E
[
∂σ(x)/σ(x)
∂σν/σν

|x ≥ x
]
, from Lemma A.4, we know

∂α/α

∂σν/σν
< lσνsup =

∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

.

We note that the conditions in Proposition A.1 and Proposition 3.5 are sufficient, but not necessary.
As discussed in the main text, we use the tail parameters for the highest and lowest expertise levels
since the entire wealth distribution is a mixture of Pareto distributions (a complicated object). We
also note that the conditions for increasing vs. decreasing participation in Case 3 are not overlapping,
because (

1 +
1

1 + B (x)

)
lσνinf ≤

(
1 +

1

1 + B (x)

)
E

[
∂σ (x) /σ (x)

∂σν/σν
|x ≥ x

]
.

Market Equilibrium Equally Weighted Sharpe Ratio The following Proposition describes
sufficient conditions for the equally weighted market Sharpe ratio to be increasing with total risk in
general equilibrium in all three cases of Proposition 3.4. It thus extends the results in Proposition 3.6 in
the main text, which covers Case 3. Equation (42) provides an equivalent statement for Condition 2 in
Proposition 3.6, non-representativeness of marginal participants. This equivalent condition substitutes
out all equilibrium objects which are used in the main text to give intuition.

Proposition A.2 The equally weighted market Sharpe ratio is increasing with total risk in general
equilibrium, i.e.,

∂SRew

∂σν
> 0,

if:

1.
∂
∂σ(x)/σ(x)
∂σν/σν

∂x ≤ 0, (Cases 1 and 3 of Proposition 3.4) and

∂x

∂σν

λ (x)

1− Λ (x)︸ ︷︷ ︸
fraction of threshold experts

difference btw marginal vol and avg︷ ︸︸ ︷1− 1

E
[
σ(x)
σ(x) |x ≥ x

]
 > − 1

σ (x)

∂σ(x)

∂x

∣∣∣
x=x︸ ︷︷ ︸

sensitivity of threshold vol w.r.t. expertise

∂x

∂σν
(42)

or
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2.
∂
∂σ(x)/σ(x)
∂σν/σν

∂x > 0, (Case 2 of Proposition 3.4) and

∂x

∂σν

λ (x)

1− Λ (x)︸ ︷︷ ︸
fraction of threshold experts

difference btw marginal vol and avg︷ ︸︸ ︷1− 1

E
[
σ(x)
σ(x) |x ≥ x

]
 >> − 1

σ (x)

∂σ(x)

∂x

∣∣∣
x=x︸ ︷︷ ︸

sensitivity of threshold vol w.r.t. expertise

∂x

∂σν
(43)

We first provide intuition for the equivalent statement for Condition 2 in Proposition 3.6, non-
representativeness of marginal participants given in Equation (42). We then show this equivalence
formally in Lemma A.6. Finally, we provide the proof for Proposition A.2.

To gain intuition for the equivalent statement for Condition 2 in Proposition 3.6, non-representativeness
of marginal participants given in Equation (42), consider the case in which expertise and complexity
are complementary, Case 3 of Proposition 3.4. Assume that Condition 2 of Proposition 3.5 is also
satisfied so that ∂x

∂σν
> 0 and we can cancel out this term from both sides of Equation (42). The

right hand side of Equation (42) describes how much the effective volatility of the marginal agent
changes with expertise. This term will always be negative before applying the negative sign in the
equation; effective volatilities decline with expertise. Thus, the condition in Equation (42) states that
if the effective volatility of the marginal agent changes substantially as x changes, then the right hand
side will be larger, and it is positive. To intuitively see why the right hand side of Equation (42) is
equivalent to that of Equation (27) in Condition 2 in Proposition 3.6, consider that we know from
the participation condition in Equation (34) that the Sharpe ratio of the marginal agent is always
equal to the same constant, determined by parameters. When the curvature of effective volatility is
higher, effective volatility declines more moving from the initial participation margin x to the new
one as total volatility increases. Then, to keep the Sharpe ratio constant at the new participation
margin as participation declines, the increase in α is smaller than it would be if effective volatility
declined less as the marginal participant changed. Thus, the decline in the Sharpe ratio of the initial
marginal participant as total volatility increases is larger for economies in which effective volatility
displays more curvature, and we have the equivalence of the right hand sides of Equations (42) and
(27). To complete the intuition for the condition in Equation (42), consider the left hand side of the
equation. The term involving the conditional pdf of expertise gives the fraction of experts which reside
at the threshold for entry. The magnitude of the next term on the left hand side is determined by
the difference between marginal agents’ effective volatilities, and the average effective volatility, and
it is also always positive. This term is close to its maximum value of one when the second term in the
parentheses is near zero, which occurs when the marginal agent’s effective volatility is very different
from the average. This condition states that, for the SRew to increase, if the effective volatility of
the marginal agent increases substantially, then, either there must be few agents at the participation
threshold, or the average Sharpe ratio of participants must be different enough from the Sharpe ratio
of the marginal participant. The key to Condition 2 is this middle term. This term, measuring the
representativeness of marginal participants’ effective volatilities, ensures that the impact of the declin-
ing Sharpe ratio of low expertise marginal participants as total volatility increases does not determine,
and is not representative of, the overall market Sharpe ratio.

Lemma A.6 shows formally that Equation (42) and Condition 2 of Proposition 3.6 are equivalent.

Lemma A.6 The sufficient condition for the equally weighted market equilibrium Sharpe ratio to
increase with total volatility in Proposition A.2, namely Equation (42), is equivalent to Condition 2
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in Proposition 3.6. That is,

∂x

∂σν

λ (x)

1− Λ (x)

1− 1

E
[
σ(x)
σ(x) |x ≥ x

]
 > − 1

σ (x)

∂σ(x)

∂x

∣∣∣
x=x

∂x

∂σν

⇔ −∂ [1− Λ (x)] / [1− Λ (x)]

∂ log σν

(
1− SR (x)

SRew

)
> −∂SR (x) /SR(x)

∂σν/σν

∣∣∣
x=x

.

Proof. Lemma A.6 We can rearrange some terms in Equation (42) using the following equations:

∂ [1− Λ (x)] / [1− Λ (x)]

∂σν/σν
= − λ (x)

1− Λ (x)

∂x

∂σν/σν
,

E

[
σ (x)

σ (x)
|x ≥ x

]
=

E
[

α
σ(x) |x ≥ x

]
α
σ(x)

=
SRew

SR (x)
.

Further, using this condition, α2

σ2(x)
= 2γfxx, we can get another equation relating the change in x to

the change in α as follows:

F (σν , x) = 2 logα− 2 log σ (x)− log (2γfxx) = 0.

Using the implicit function theorem, we obtain another expression for the change in the participation
threshold as total volatility changes:

∂x

∂σν
= −∂F (σν , x (σν)) /∂σν

∂F (σν , x) /∂x
=

1

σν

∂α/α
∂σν/σν

− ∂σ(x)/σ(x)
∂σν/σν

∣∣∣
x=x

1
σ(x)

∂σ(x)
∂x

∣∣∣
x=x

, (44)

From Equation (44), we have that

∂SR (x) /SR(x)

∂σν/σν

∣∣∣
x=x

=
∂α/α

∂σν/σν
− ∂σ (x) /σ(x)

∂σν/σν

∣∣∣
x=x

=
∂x

∂σν/σν

1

σ (x)

∂σ(x)

∂x

∣∣∣
x=x

.

Thus,

∂x

∂σν

λ (x)

1− Λ (x)

1− 1

E
[
σ(x)
σ(x) |x ≥ x

]
 > − 1

σ (x)

∂σ(x)

∂x

∣∣∣
x=x

∂x

∂σν

⇔ −∂ [1− Λ (x)] / [1− Λ (x)]

∂σν/σν︸ ︷︷ ︸
elasticity of participation

(
1− SR (x)

SRew

)
︸ ︷︷ ︸

difference between marginal agent and average

> −∂SR (x) /SR(x)

∂σν/σν

∣∣∣
x=x︸ ︷︷ ︸

elasticity of marginal SR

.

Proof. Propositions 3.6 and A.2
For convenience, we consider the partial derivative of the positive transformation logSRew, namely,

the log of the integral over all participants’ Sharpe ratios divided by the measure of participants:

logSRew = log

∫ x
x

α
σ(x)dΛ (x)

1− Λ (x)

= log

∫ x

x

α

σ (x)
dΛ (x)− log [1− Λ (x)]

As σν changes, the equilibrium equally weighted market-level Sharpe ratio will change from several
effects. First, each individual effective volatility will increase, according to the elasticity of effective
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volatility with respect to total volatility at each expertise level. To clear the market, the equilibrium
α will increase. Finally, participation will change. Taking these effects together, the change in the
equally weighted market-level Sharpe ratio will be the change in the individual Sharpe ratios of each
expertise level of investors, weighted by their mass in the distribution of expertise, plus the effect on
participation. By direct calculation, we have:

∂ logSRew

∂σν

=

α
σν

∫ x
x

1
σ(x)

(
∂α/α
∂σν/σν

− ∂σ(x)/σ(x)
∂σν/σν

)
dΛ (x)− α

σ(x)λ (x) ∂x
∂σν∫ x

x
α
σ(x)dΛ (x)

+
1

1− Λ (x)
λ (x)

∂x

∂σν
,

where the first term gives the weighted average change in individual Sharpe ratios, and the second
term gives the effect on participation. Note the appearance of the expertise-specific differences in
the elasticity of alpha and effective volatility with respect to total volatility. Individual Sharpe ratios
increase for individuals for which this difference in elasticities is positive. The larger these differences
are on average, then, the more likely it is that the market Sharpe ratio will increase. The sign of ∂x

∂σν
depends on which case of Proposition 3.4 applies. Collecting terms, and cancelling α in the numerator
and denominator of the first term, we have:

∂ logSRew

∂σν

=
1

σν

∫ x
x

1
σ(x)

(
∂α/α
∂σν/σν

− ∂σ(x)/σ(x)
∂σν/σν

)
dΛ (x)∫ x

x
1

σ(x)dΛ (x)
+ λ (x)

∂x

∂σν

 1

1− Λ (x)
−

1
σ(x)∫ x

x
1

σ(x)dΛ (x)

 . (45)

Equation (45) contains two changes in equilibrium outcomes, α and x. The other variables depend only
on parameters, or distribution or functional form assumptions. The market clearing condition can be
used to eliminate one of the equilibrium outcomes. In particular, we know that aggregate investment
must be unchanged and equated to the aggregate supply of the risky asset. Using Equation (37)
for the change in expertise-level investment with total volatility and accounting for the change in
participation we then have for aggregate investment it must be that:

0 =
∂I

∂σν
=

∫ x

x

∂I (x)

∂σν
dΛ (x)− I (x)λ (x)

∂x

∂σν

=

∫ x

x

{
I (x)

σν
(1 + B(x))

(
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

)}
dΛ (x)

−
∫ x

x

I (x)

σν

∂σ (x) /σ (x)

∂σν/σν
dΛ (x)− I (x)λ (x)

∂x

∂σν
. (46)

Rearranging terms, we have an expression for the change in the participation threshold, weighted by
the mass of agents at the threshold, that must be satisfied in order for the risky asset market to clear:

λ (x)
∂x

∂σν
=

1

I (x)

∫ x

x

{
I (x)

σν
(1 + B(x))

(
∂α/α

∂σν/σν
− ∂σ (x) /σ (x)

∂σν/σν

)}
dΛ (x)

− 1

I (x)

∫ x

x

I (x)

σν

∂σ (x) /σ (x)

∂σν/σν
dΛ (x) . (47)

Collecting terms with the elasticities with respect to α and effective volatility σ(x), we can write this
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as:

λ (x)
∂x

∂σν
(48)

=
1

I (x)

∫ x

x

I (x)

σν
(1 + B(x))

∂α/α

∂σν/σν
dΛ (x)− 1

I (x)

∫ x

x

I (x)

σν
(2 + B(x))

∂σ (x) /σ (x)

∂σν/σν
dΛ (x)

Equation (48) essentially states that the change in demand for the complex asset from the change in
participation must be met by an offsetting change in demand by the remainder of participants in the
complex risky asset market. There are two parts to the change in demand of participants above the
threshold. First, there is an increase in demand of 1% for every 1% increase in α, multiplied by the
elasticity of wealth with respect to changes in volatility. Second, there is a decrease in demand of 2%
for every 1% increase in effective volatility, again weighted by the elasticity of wealth with respect to
changes in volatility. Grouping terms, and then plugging this expression for λ (x) ∂x

∂σν
into ∂ logSRew

∂σν
,

we obtain
∂ logSRew

∂σν

=
1

σν

∫ x
x

1
σ(x)

(
∂α/α
∂σν/σν

− ∂σ(x)/σ(x)
∂σν/σν

)
dΛ (x)∫ x

x
1

σ(x)dΛ (x)
+ λ (x)

∂x

∂σν

 1

1− Λ (x)
−

1
σ(x)∫ x

x
1

σ(x)dΛ (x)


=

1

σν

 ∂α/α

∂σν/σν
−

∫ x
x

1
σ(x)

∂σ(x)/σ(x)
∂σν/σν

dΛ (x)∫ x
x

1
σ(x)dΛ (x)

+ λ (x)
∂x

∂σν

 1

1− Λ (x)
−

1
σ(x)∫ x

x
1

σ(x)dΛ (x)


=

∂α/α

∂σν/σν

 1

σν
+

 1

1− Λ (x)
−

1
σ(x)∫ x

x
1

σ(x)dΛ (x)

 1

σνI (x)

∫ x

x
I (x) (1 + B(x)) dΛ (x)


−

 1

1− Λ (x)
−

1
σ(x)∫ x

x
1

σ(x)dΛ (x)

 1

σνI (x)

∫ x

x
I (x) (2 + B(x))

∂σ (x) /σ (x)

∂σν/σν
dΛ (x)

− 1

σν

∫ x
x

1
σ(x)

∂σ(x)/σ(x)
∂σν/σν

dΛ (x)∫ x
x

1
σ(x)dΛ (x)

.

Therefore, ∂ logSRew

∂σν
> 0 if and only if

∂α/α

∂σν/σν

>

{
1

1−Λ(x) −
1

σ(x)∫ x
x

1
σ(x)

dΛ(x)

}
1

I(x)

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x) +

∫ x
x

1
σ(x)

∂σ(x)/σ(x)
∂σν/σν

dΛ(x)∫ x
x

1
σ(x)

dΛ(x){
1

1−Λ(x) −
1

σ(x)∫ x
x

1
σ(x)

dΛ(x)

}
1

I(x)

∫ x
x [I (x) (1 + B(x))] dΛ (x) + 1

.

We divide through by 1
1−Λ(x) −

1
σ(x)∫ x

x
1

σ(x)
dΛ(x)

and rearrange to get an expression that will allow us to
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more easily bound the elasticity of α. We then have ∂ logSRew

∂σν
> 0 if and only if

∂α/α

∂σν/σν

>

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x) +

∫ x
x

1
σ(x)

∂σ(x)/σ(x)
∂σν/σν

dΛ(x)∫ x
x

1
σ(x)

dΛ(x)

1{
1

1−Λ(x)
−

1
σ(x)∫ x

x
1

σ(x)
dΛ(x)

}
1

I(x)∫ x
x [I (x) (1 + B(x))] dΛ (x) + 1{

1
1−Λ(x)

−
1

σ(x)∫ x
x

1
σ(x)

dΛ(x)

}
1

I(x)

. (49)

Now, in order to derive an exact expression for α as a function of parameters, consider again the
term ∂x

∂σν
. The participation condition in Equation (34) can be used to show that the individual

Sharpe ratio of the marginal agent is a constant function of the coefficient of relative risk aversion and
the participation maintenance cost. Then, using this condition, α2

σ2(x)
= 2γfxx, we can get another

equation relating the change in x to the change in α as follows:

F (σν , x) = 2 logα− 2 log σ (x)− log (2γfxx) = 0.

Using the implicit function theorem, we obtain another expression for the change in the participation
threshold as total volatility changes:

∂x

∂σν
= −∂F (σν , x (σν)) /∂σν

∂F (σν , x) /∂x
=

1

σν

∂α/α
∂σν/σν

− ∂σ(x)/σ(x)
∂σν/σν

∣∣∣
x=x

1
σ(x)

∂σ(x)
∂x

∣∣∣
x=x

, (50)

where we see the difference in the elasticity of alpha and effective volatility with respect to total
volatility for the marginal agent in the numerator. Since effective volatility is decreasing in expertise,
the effective volatility for the marginal agent decreases as x increases, and the denominator is negative.
Thus, participation declines and x increases in total volatility the smaller the elasticity of α is relative
to the elasticity of the effective volatility of the marginal agent. Then, from Equations (48) and (50),
we have another expression for the elasticity of α with respect to changes in total volatility:

∂α/α

∂σν/σν
=

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)− I(x)λ(x)

1
σ(x)

∂σ(x)
∂x

∂σ(x)/σ(x)
∂σν/σν

∣∣∣
x=x∫ x

x I (x) (1 + B(x)) dΛ (x)− I(x)λ(x)
1

σ(x)
∂σ(x)
∂x

∣∣∣
x=x

. (51)

Now, from Equation (49) we have a lower bound on what the elasticity of α must be in order for
∂ logSRew

∂σν
> 0. From Equation (51) we have an expression for α. Thus, we have that ∂ logSRew

∂σν
> 0 if

and only if: ∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)− I(x)λ(x)

1
σ(x)

∂σ(x)
∂x

∂σ(x)/σ(x)
∂σν/σν

∣∣∣
x=x∫ x

x I (x) (1 + B(x)) dΛ (x)− I(x)λ(x)
1

σ(x)
∂σ(x)
∂x

∣∣∣
x=x

>

∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x) +

∫ x
x

1
σ(x)

∂σ(x)/σ(x)
∂σν/σν

dΛ(x)∫ x
x

1
σ(x)

dΛ(x)

1{
1

1−Λ(x)
−

1
σ(x)∫ x

x
1

σ(x)
dΛ(x)

}
1

I(x)∫ x
x I (x) (1 + B(x)) dΛ (x) + 1{

1
1−Λ(x)

−
1

σ(x)∫ x
x

1
σ(x)

dΛ(x)

}
1

I(x)

. (52)

To continue the proof, we define a simplified notation for this condition, namely we write that
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∂ logSRew

∂σν
> 0 if and only if:

a+ c

b+ d
>
a+ e

b+ f
, (53)

where we define:

a =

∫ x

x
I (x) (2 + B(x))

∂σ (x) /σ (x)

∂σν/σν
dΛ (x) ,

b =

∫ x

x
I (x) (1 + B(x)) dΛ (x) ,

c = −I (x)λ (x)
1

σ(x)
∂σ(x)
∂x

∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

,

d = −I (x)λ (x)
1

σ(x)
∂σ(x)
∂x

∣∣∣
x=x

,

e =

∫ x
x

1
σ(x)

∂σ(x)/σ(x)
∂σν/σν

dΛ (x)∫ x
x

1
σ(x)dΛ (x)

1{
1

1−Λ(x) −
1

σ(x)∫ x
x

1
σ(x)

dΛ(x)

}
1

I(x)

,

f =
1{

1
1−Λ(x) −

1
σ(x)∫ x

x
1

σ(x)
dΛ(x)

}
1

I(x)

.

Comparing the right and left hand sides of the condition under which the equally weighted market
Sharpe ratio is increasing,

a+ c

b+ d
>
a+ e

b+ f
,

note that the difference is that the left side essentially includes c
d , while the right hand side includes

e
f . Both sides include a

b . Recall from the proof of Lemma A.4, and Equations (40) and (41), that a
b is

the ratio of the partial equilibrium change in demand with respect to total volatility (holding α and x
constant), and the partial equilibrium change in demand with respect to α. To gain further intuition
for our condition, we can use the expressions for c

d and e
f , and simplify to show that:

c

d
=
∂σ (x) /σ (x)

∂σν/σν

∣∣∣
x=x

and
e

f
=

∫ x
x

1
σ(x)

∂σ(x)/σ(x)
∂σν/σν

dΛ (x)∫ x
x

1
σ(x)dΛ (x)

.

Thus, in loose terms what is needed for the equally weighted market Sharpe ratio to increase is that
the elasticity of the marginal agent is sufficiently larger than the weighted average over all elasticities,
where the weights are increasing in expertise. This condition essentially ensures that α increases by
enough to outweigh the increase in effective volatilities of agents with lower expertise levels who still
choose to participate. We begin by describing sufficient conditions for

a+ c

b+ d
>
a+ e

b+ f
,

in the three cases of Proposition 3.4, and depending on whether participation is increasing or decreasing
in total volatility. Then, using these results, we derive a sufficient condition covering all cases.

Case 1 of Proposition 3.4, and Case 3 of Proposition 3.4 with Increasing Partici-
pation: First, we have

e

f
≤ c

d
<
a

b
.
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To see this, note that in Case 1 of Proposition 3.4, elasticities are constant in x and so e
f = c

d . The last
inequality follows from the fact that when participation is increasing, Equation (41) from the proof of
Lemma A.4 shows that a

b is larger than the elasticity of the marginal agent, and hence larger than the
elasticity of all agents. In Case 3, we have declining elasticities, generating the first inequality. The
last inequality again follows from Equation (41), which holds when participation increases.

We can show that a+c
b+d >

a+e
b+f if

d < f.

This is true because
a+ c

b+ d
>

a+ e

b+ f
⇔ (a+ c) (b+ f) > (a+ e) (b+ d)

⇐ af + cb > ad+ be

⇔ a (f − d) > b (e− c)

⇐ f > d and
a

b
>
e− c
f − d

.

We relate the condition that d < f to underlying parameters and collect the results for all Cases of
Proposition 3.4 at the end of the proof.

Case 2 of Proposition 3.4: First, we prove that

a

b
=

∫ x
x I(x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I(x) (1 + B(x))] dΛ (x)
>

∫ x
x

1
σ(x)

∂σ(x)/σ(x)
∂σν/σν

dΛ (x)∫ x
x

1
σ(x)dΛ (x)

=
e

f
.

To show this, consider the function:

H (K (x)) =

∫ x
x K (x) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x K (x) dΛ (x)

=

∫ x

x

K (x) dΛ (x)∫ x
x K (x) dΛ (x)

∂σ (x) /σ (x)

∂σν/σν
dx.

This function, H (K (x)), represents a “weighted” average of elasticities, with weights given by K (x).
Suppose we have

K1 (x) = K2 (x)K3 (x) ,

where we assume that K3 is monotonically increasing in x. Because we have that
∂
∂σ(x)/σ(x)
∂σν/σν

∂x ≥ 0, and
K3 is monotonically increasing in x, we have that the weights K1 (x) underweight lower elasticities
and overweight higher elasticities relative to the weights K2 (x). Therefore,

H (K1 (x)) ≥ H (K2 (x)) .

Note that we can write:

I(x) (1 + B(x))︸ ︷︷ ︸
K1(x)

=

K2(x)︷ ︸︸ ︷
1

σ (x)
[I (x)σ (x) (1 + B(x))]︸ ︷︷ ︸

K3(x)

,

and further we have that:

I (x)σ (x) (1 + B(x)) =
α

γσ (x)
Z (x) (1 + B(x)) ,
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which is monotonically increasing, as assumed for K3 (x). Thus, we have:∫ x
x I (x) (2 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I (x) (1 + B(x))] dΛ (x)
>

∫ x
x I (x) (1 + B(x)) ∂σ(x)/σ(x)

∂σν/σν
dΛ (x)∫ x

x [I (x) (1 + B(x))] dΛ (x)
>

∫ x
x

1
σ(x)

∂σ(x)/σ(x)
∂σν/σν

dΛ (x)∫ x
x

1
σ(x)dΛ (x)

, (54)

where the first inequality is because we replace a one with a two in the numerator, and the second
inequality is because we showed that H (K1) > H (K2).

So, we have c
d <

e
f <

a
b . The first inequality follows from the fact that in Case 2 of Proposition

3.4, because elasticities increase with expertise, the lowest expertise agent has the smallest elasticity
of effective volatility with respect to total volatility. Thus, c

d = lσνinf . The second inequality follows
from Equation (54).

Using these results, we can derive the following inequalities
a+ e

b+ f
<
a

b
, and

a+ c

b+ d
<
a

b
,

Therefore, we have a+c
b+d >

a+e
b+f if

d << f.

This is true mathematically because if d is small enough relative to f , then the value of a+c
b+d will be

closer to a
b than a+e

b+f will be.

Case 3 of Proposition 3.4 with Decreasing Participation. In Case 3 of Proposition 3.4
we have that c

d >
e
f . Because in Case 3 elasticities decline with expertise, the lowest expertise agent

has the largest elasticity with respect to total volatility. Thus, c
d = lσνsup, which will be larger than the

weighted average e
f . We also have, then, that c

d >
a
b from Equation (40). Given these relationships,

we proceed to show that a sufficient condition for
a+ c

b+ d
>
a+ e

b+ f

is that

d > f.

We consider each case for a
b vs. e

f separately, since we do not know their relative values in Case 3:

1. First, if e
f ≤

a
b <

c
d , then

a+ e

b+ f
≤ a

b
, and

a+ c

b+ d
>
a

b
,

thus
a+ c

b+ d
>
a+ e

b+ f
,

without any restriction on d relative to f .

2. Second, if c
d >

e
f >

a
b and d > f, we have

a

b
<
e

f
<
c− e
d− f

,

where the second inequality is from the following algebraic argument:
e

f
<
c− e
d− f

⇔ ed < cf ⇔ c

d
>
e

f
.
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Then, we have, using these results and our assumption that d > f :

d > f and
a

b
<
c− e
d− f

⇒ a (f − d) > b (e− c)
⇔ af + cb > ad+ be

⇒ af + cb+ cf > ad+ be+ ed

⇔ (a+ c) (b+ f) > (a+ e) (b+ d)

⇔ a+ c

b+ d
>
a+ e

b+ f
.

Combining Conditions for Cases 1-3 of Proposition 3.4 In Case 1 and Case 3 with
increasing participation, we need

d < f.

In Case 3 with decreasing participation, we need

d > f.

Combined with participation effects, we can use the following one condition:

∂x

∂σν
d > f

∂x

∂σν
.

That is,

− ∂x

∂σν

I (x)λ (x)
1

σ(x)
∂σ(x)
∂x

∣∣∣
x=x

>
1{

1
1−Λ(x) −

1
σ(x)∫ x

x
1

σ(x)
dΛ(x)

}
1

I(x)

∂x

∂σν

⇔ − ∂x

∂σν

λ (x)
1

σ(x)
∂σ(x)
∂x

∣∣∣
x=x

>
1

1
1−Λ(x)

{
1−

1
σ(x)

E
[

1
σ(x)
|x≥x

]
} ∂x

∂σν

⇔ ∂x

∂σν

λ (x)

1− Λ (x)

1− 1

E
[
σ(x)
σ(x) |x ≥ x

]
 > − 1

σ (x)

∂σ(x)

∂x

∣∣∣
x=x

∂x

∂σν
.

Proof. Proposition 4.1 Suppose we have two risky assets with different total volatility, σHν and σLν .
Because each agent can only invest in one risky asset, we only need to compare the value function of
investing in σHν versus the value function of investing in σLν . Suppressing the notation ν, denote the
effective volatilities for each asset as σH (x) and σL (x) .

From the Proposition 2.1, in a stationary equilibrium, we have

V n (w, x) = yn (x)
w1−γ

1− γ
,

V x
H (w, x) = yxH (x)

w1−γ

1− γ
,

V x
L (w, x) = yxL (x)

w1−γ

1− γ
,
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where yn (x) , yxH (x) and yxL (x) are given by:

yxH (x) =

[
(γ − 1) (rf − fxx) + ρ

γ
+

(γ − 1)α2
H

2γ2σ2
H (x)

]−γ
yxL (x) =

[
(γ − 1) (rf − fxx) + ρ

γ
+

(γ − 1)α2
L

2γ2σ2
L (x)

]−γ
yn (x) =

[
(γ − 1) rf + ρ

γ

]−γ
.

Consider an equilibrium in which all higher expertise investors, x ≥ x̂, invests in σHν , medium
expertise, x ≤ x < x̂, invests in σLν , and low expertise, x > x, invests in the risk free asset only. Then,
the following conditions must be satisfied,

α2
H

σ2
H (x)

≥
α2
L

σ2
L (x)

, for all x ≥ x̂,

α2
H

σ2
H (x)

≤
α2
L

σ2
L (x)

, for all x ≤ x < x̂,

(γ − 1)α2
L

2γ2σ2 (x)
= fxx.

Since x̂ is indifferent between investing in σHν and σLν , the equilibrium α’s must satisfy

αH =
σH (x̂)

σL (x̂)
αL =

(
1 +

σH (x̂)− σL (x̂)

σL (x̂)

)
αL.

It is straightforward to further show that:

α2
H

σ2
H (x)

≥
α2
L

σ2
L (x)

, for all x ≥ x̂⇔
σH(x)−σL(x)

σL(x)

σH − σL
≤

αH−αL
αL

σH − σL
,

α2
H

σ2
H (x)

≤
α2
L

σ2
L (x)

, for all x ≤ x < x̂⇔
σH(x)−σL(x)

σL(x)

σH − σL
≥

αH−αL
αL

σH − σL
,

which is true if the elasticity of effective volatility is decreasing, i.e. if

∂ ∂σ(x)/σ(x)
∂σν/σν

∂x
< 0.

The model can be solved in an analogous way to each single asset economy. There are now four
equations and four unknowns. The participation conditions are:

α2
H

σ2
H (x̂)

=
α2
L

σ2
L (x̂)

, and

(γ − 1)α2
L

2γ2σ2 (x)
= fxx.

The equilibrium αL, αH , x̂,and x, must satisfy these two conditions, as well as the two market clearing
conditions equating total demand to total detrended supply of each asset.

Numerical Algorithm Because α and I form a bijection (Proposition 3.1 provides conditions for
which they are one to one and onto), for any given supply of the complex risky asset, we can solve for
the market equilibrium α in the following steps:

1. Choose an upper and a lower bound for α, namely α1 and α2, (α1 > α2).
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2. Let α = α1+α2
2 , and compute the total demand for the risky asset∫

λ (x) I (x) dx

3. If S −
∫
λ (x) I (x) dx < −10−4, let α1 = α and back to step 1; if S −

∫
λ (x) I (x) dx > 10−4, let

α2 = α and back to step 1; otherwise, STOP.
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